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Abstract

The main object of this paper is the Cauchy problem for the dynamic system of anisotropic elasticity. Existence and
uniqueness theorems of weak and smooth solutions of this problem are established by the reduction of the original elas-
ticity system into a symmetric hyperbolic system of the first order. The numerical method of the Cauchy problem solv-
ing for anisotropic elastic system with polynomial data is obtained and its correctness is established. The simulations of
the numerical solutions are presented.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A dynamic mathematical model of wave propagations in anisotropic media is described by a system of
partial differential equations (Dieulesaint and Royer, 1980; Fedorov, 1968; Ting, 1996; Ting et al., 1990).
As is well known the well-posedness of an initial value problem (IVP) is a basic consistency check of the
system for which IVP is considered. The goal to realize that a system of partial differential equations is
reducible to a symmetric hyperbolic system of the first order is natural because in this case there is a chance
to show that this system has a well-posed IVP. The different approaches to analyze systems of elasticity and
magnetoelasticity as hyperbolic systems may be found in the literature (Beig and Schmidt, 2003; Christo-
doulon, 2000; Cohen and Fauqueux, 2003; Duff, 1960; Marsden and Hughes, 1983; Sacks and Yakhno,
1998; Yakhno, 1998 and others).
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Let x ¼ ðx1; x2; x3Þ 2 R3. We assume that R3 is an elastic medium, whose small amplitude vibrations
uðx; tÞ ¼ ðu1ðx; tÞ; u2ðx; tÞ; u3ðx; tÞÞ ð1Þ
are governed by the system of partial differential equations and initial conditions
q
o
2uj
ot2

¼
X3
k¼1

orjk

oxk
; x ¼ ðx1; x2; x3Þ 2 R3; t > 0; j ¼ 1; 2; 3; ð2Þ

ujðx; 0Þ ¼ ujðxÞ;
oujðx; tÞ

ot

����
t¼0

¼ wjðxÞ; j ¼ 1; 2; 3: ð3Þ
Here q is the density of the medium,
rjk ¼
X3
l;m¼1

Cjklm�lm; j; k ¼ 1; 2; 3 ð4Þ
is the stress tensor,
�lm ¼ 1
2

oul
oxm

þ oum
oxl

� �
; l;m ¼ 1; 2; 3 ð5Þ
is the strain tensor, and fCjklmg3j;k;l;m¼1 are the elastic moduli of the medium, uj(x), wj(x), j = 1,2,3 are
smooth functions. We assume that q and Cjklm are constants.
It is convenient and customary to describe the elastic moduli in terms of a 6·6 matrix according to the

following conventions relating a pair (j,k) of indices j,k = 1,2,3 to a single index a = 1, . . ., 6:
ð1; 1Þ $ 1; ð2; 2Þ $ 2; ð3; 3Þ $ 3; ð2; 3Þ; ð3; 2Þ $ 4; ð1; 3Þ; ð3; 1Þ $ 5;

ð1; 2Þ; ð2; 1Þ $ 6: ð6Þ
This correspondence is possible due to the symmetry properties Cjklm = Ckjlm = Cjkml. The additional sym-
metry property Cjklm = Clmjk implies that the matrix
C ¼ ðCabÞ6	6 ð7Þ

of all moduli where a = (jk), b = (lm), is symmetric. We will assume also that q>0 and the matrix (Cab)6·6 is
positive definite.
In this paper we analyze relations (2)–(5) from two points of view. The first one is the following. The

equalities (2) and (4) are written in the form of a symmetric hyperbolic system of the first order. Using
the theory of the Cauchy problems for symmetric hyperbolic systems (Mizohata, 1973) we obtain the gen-
eral theoretical results: existence and uniqueness theorems of weak and smooth solutions of the initial value
problem (2) and (3). Sections 2 and 3 contain these results. The second view point is related with the anal-
ysis of relations (2) and (4) as the Cauchy problem for the second order hyperbolic equations system with
the polynomial initial data. As a result of this analysis we show in Section 4 that the solution of (2) and (3)
is a polynomial with respect to the lateral variables if the initial data are polynomials relative to the same
variables. To find a solution of the initial value problem (2) and (3) with polynomial data we specified a
procedure of the polynomial coefficients recovery. This procedure we called polynomial solution method
(PS-method). This method is described in Section 5. The correctness of this method and simulations of
the numerical solutions of the Cauchy problems for anisotropic elastic system are given in Section 6. In
conclusion some generalizations and remarks on our research are described. At the end of the paper there
are appendices containing facts from the theory of symmetric hyperbolic systems of the first order and ma-
trix theory in the form and volume that are convenient for us.
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2. System of elasticity as a symmetric hyperbolic system

We show here that relations (2) and (4) may be written as a symmetric hyperbolic system.
Let
Ui ¼
oui
ot

; i ¼ 1; 2; 3: ð8Þ
Using the rule (6) we denote a pair (j,k) of indices j,k = 1,2,3 as a single index a, a = 1,2, . . ., 6. This cor-
respondence is possible to make for rjk and �jk because of the symmetry properties rjk = rkj, �jk = �kj.
We have
T ¼ ðr1; r2; r3; r4; r5; r6Þ
; � ¼ ð�1; �2; �3; �4; �5; �6Þ
: ð9Þ

Here * is the sign of transposition.
Let
U ¼ ðU 1;U 2;U 3Þ
; Y ¼ ð�1; �2; �3; 2�4; 2�5; 2�6Þ
: ð10Þ

Consider now system (2). Using vectors U and T this system may be written in another form as follows:
q
oU

ot
þ
X3
k¼1

A1k
oT

oxk
¼ 0; ð11Þ
where
A11 ¼
�1 0 0 0 0 0

0 0 0 0 0 �1
0 0 0 0 �1 0

2
64

3
75; A12 ¼

0 0 0 0 0 �1
0 �1 0 0 0 0

0 0 0 �1 0 0

2
64

3
75; A13 ¼

0 0 0 0 �1 0

0 0 0 �1 0 0

0 0 �1 0 0 0

2
64

3
75:
ð12Þ
Consider the relation (4). Using vectors T and Y this relation can be written as
T ¼ CY; ð13Þ

where C is defined by (7). Differentiating (13) with respect to t and multiplying both sides by C�1 we find
C�1 oT

ot
¼ oY

ot
; ð14Þ
where C�1 is the inverse matrix to C. Using the relations
o�j
ot

¼ oUj

oxj
; j ¼ 1; 2; 3; 2

o�4
ot

¼ oU 2

ox3
þ oU 3

ox2
;

2
o�5
ot

¼ oU 1

ox3
þ oU 3

ox1
; 2

o�6
ot

¼ oU 1

ox2
þ oU 2

ox1
;

ð15Þ
the system (14) may be written as
C�1 oT

ot
þ
X3
j¼1

ðA1j Þ

 oU

oxj
¼ 0; ð16Þ
where ðA1j Þ

, j = 1,2,3 are adjoint matrices to A1j , j = 1,2,3.

The relations (11) and (16) can be presented by a single system as
A0
oV

ot
þ
X3
j¼1

Aj
oV

oxj
¼ 0; ð17Þ
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where A0 = diag(qI3,C
�1) is the block-diagonal matrix,
V ¼
U

T

� �
; Aj ¼

03;3 A1j

A1
j 06;6

" #
; j ¼ 1; 2; 3: ð18Þ
Here and further Im is the unit matrix of the order m·m and 0l,m is the zero matrix of the order l·m.
To show that the system (17) is transformed into the following form:
I9
o~V

ot
þ
X3
j¼1

~Aj
o~V

oxj
¼ 0; ð19Þ
where ~Aj, j = 1,2,3 are symmetric, we use two facts of matrix theory. The first one says that for the sym-
metric positive definite matrix C there exists a symmetric positive definite matrix M such that C�1 =M2

(see Theorems 6, 7 of Appendix A). The second fact explains that the matrix M�1, which is inverse to
M, is symmetric (see Theorem 6 of Appendix A). Considering now (17) and multiplying it by the matrix
S ¼ q�12I3 03;6

06;3 M�1

" #
ð20Þ
from the left-hand side we find (19), where
~Aj ¼ SAjS; V ¼ S~V: ð21Þ

We note that ~Aj, j = 1,2,3 are still symmetric (see Theorem 8 of Appendix A).
3. Existence and uniqueness theorems for (2) and (3)

In this section the existence and uniqueness theorems for the weak and smooth solutions of the initial
value problem (2) and (3) are described. These results follow from the reduction of (2) to the symmetric
hyperbolic system (19) and the theory of symmetric hyperbolic systems (Evans, 1998; Mizohata, 1973),
(see also Appendix B).
Using notations and reasoning of the Sections 1, 2 and equalities
Uiðx; 0Þ ¼ wiðxÞ; rjkjt¼0 ¼
X3
l;m¼1

Cjklm
oulðxÞ
oxm

; i; j; k ¼ 1; 2; 3; ð22Þ
we obtain from (2)–(5) the initial value problem for (19) with known data
~Vðx; 0Þ ¼ V0ðxÞ; x 2 R3: ð23Þ

The theory of symmetric hyperbolic systems of the first order gives a chance to get the existence and unique-
ness theorems for the Cauchy problem (19) and (23). We describe these existence and uniqueness theorems
for weak and smooth solutions in Appendix B in a form which is convenient for us (see Theorems 9–11).
These theorems may be written in terms of the original problem (2) and (3) as we state below. For state-
ments of these theorems we will use the following notation. The spacesL2ðR3;R3Þ, CkðR3;R3Þ,HkðR3;R3Þ,
(k = 0,1,2, . . .) consist of all vector functions w = (w1,w2,w3) such that wj belongs to L2ðR3Þ, CkðR3Þ,
HkðR3Þ, j = 1,2,3, respectively. Here CkðR3Þ is the space of all k times continuously differentiable func-
tions; HkðR3Þ is Sobolev space (Evans, 1998), (see also Appendix B) and L2ðR3Þ ¼ H0ðR3Þ, CðR3Þ ¼
C0ðR3Þ. The spaces Clð½0; T �;HkðR3;R3ÞÞ, Clð½0; T �;CkðR3;R3ÞÞ are the spaces of all l times continuously
differentiable functions with respect to t such that u : ½0; T � ! HkðR3;R3Þ and u : ½0; T � ! CkðR3;R3Þ,
respectively. Let ci, i = 1,2 be nonnegative integer numbers,
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c ¼ ðc1; c2; 0Þ; jcj ¼ c1 þ c2; Dc ¼ ojcj

oxc1
1 ox

c2
2

: ð24Þ
The following existence and uniqueness theorem for weak solution of (2) and (3) is obtained from symmet-
ric hyperbolic system theory of the first order (see Theorem 9 of Appendix B) which we apply to the Cauchy
problem (19) and (23).

Theorem 1. Let uðxÞ 2 H2ðR3;R3Þ;wðxÞ 2 H1ðR3;R3Þ, T be a fixed positive number; q; fCjklmg3j;k;l;m¼1
satisfy conditions mentioned in Section 1. Then there exists a unique weak solution u(x, t) of the initial value

problem (2) and (3) such that
uðx; tÞ 2 C1ð½0; T �;H1ðR3;R3ÞÞ
\

C2ð½0; T �;L2ðR3;R3ÞÞ;

rjk ¼
X3
l;m¼1

Cjklm
oulðx; tÞ
oxm

2 Cð½0; T �;H1ðR3ÞÞ
\

C1ð½0; T �;L2ðR3ÞÞ:
ð25Þ
The following theorem is found from the Theorem 11 in Appendix B which we apply to (19) and (23).

Theorem 2. Let c = (c1,c2, 0) be an arbitrary multiindex, T be a fixed positive number; q; fCjklmg3j;k;l;m¼1
satisfy conditions mentioned in Section 1; u, w be vector functions such that

DcuðxÞ 2 H4ðR3;R3Þ;DcwðxÞ 2 H3ðR3;R3Þ. Then the weak solution u(x, t) of (2) and (3) satisfies the

following properties: \

Dcuðx; tÞ 2 C1ð½0; T �;C1ðR3;R3ÞÞ C2ð½0; T �;CðR3;R3ÞÞ;

Dcrjk ¼
X3
l;m¼1

Cjklm
oDcul
oxm

2 Cð½0; T �;C1ðR3ÞÞ
\

C1ð½0; T �;CðR3ÞÞ;
ð26Þ
where Dc is defined by (24).

Applying Theorem 2 for the cases c = (c1,c2,0), c1 + c2 = 0,1,2,3, . . . we obtain the following theorem.

Theorem 3. Let u(x) = (u1(x),u2(x),u3(x)), w(x) = (w1(x),w2(x),w3(x)) satisfy
ujðxÞ 2 C1
x1;x2

ðR2;C2ðRÞÞ
\

H4ðR3Þ;

wjðxÞ 2 C1
x1;x2

ðR2;C1ðRÞÞ
\

H3ðR3Þ; j ¼ 1; 2; 3;
ð27Þ
then the weak solution u(x, t) = (u1(x, t),u2(x, t),u3(x, t)) of (2) and (3) is a classical solution and
ukðx; tÞ 2 C1
x1;x2

ðR2;HÞ; k ¼ 1; 2; 3; ð28Þ

rjk 2 C1
x1;x2

ðR2;HÞ; j; k ¼ 1; 2; 3; ð29Þ

where
H ¼ C1ð½0; T �;C1ðRÞÞ
\

C2ð½0; T �;CðRÞÞ: ð30Þ
The following theorem is related to the uniqueness of the solution for the initial value problem inside the
conoid of the dependence. Appendix C contains the definition of the dependence conoid and its properties.

Theorem 4. Let T be a positive number, x0 2 R3 be an arbitrary point, P ¼ ðx0; T Þ 2 R4, C(P) be the conoid of

the dependence for the system (19), u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) be a solution of the initial value problem

(2) and (3) such that
ujðx; tÞ 2 C1ð½0; T �;H1ðR3ÞÞ
\

C2ð½0; T �;L2ðR3ÞÞ; ð31Þ
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rjk ¼
X3
l;m¼1

Cjklm
oulðx; tÞ
oxm

2 Cð½0; T �;H1ðR3ÞÞ
\

C1ð½0; T �;L2ðR3ÞÞ: ð32Þ
Then if u(x, t) vanishes on S(0) it also vanishes on each surface S(h), h 2 (0,T). Here S(0) and S(h) are parts of

the planes t = 0 and t = h, respectively, inside the conoid C(P).

The proof of this theorem follows from the reduction of the system (2) into a symmetric hyperbolic sys-
tem (19) and Theorem 14 of Appendix C.
4. Solution of (2) and (3) with polynomial data with respect to lateral variables

The goal of this section is to show that the solution u = (u1,u2,u3) of the problem (2) and (3) can be writ-
ten in the polynomial form with respect to lateral variables x1, x2 if the data u = (u1,u2,u3),
w = (w1,w2,w3) have the polynomial form relative to x1, x2.
We use the following notations and assumptions in this section. Let T be an arbitrary positive number,

x0 = (0,0,0), P ¼ ðx0; T Þ 2 R4, C(P) be the conoid of the dependence for the system (19), S(0) be the bottom
of this conoid for t = 0. Suppose that the solution u(x, t) of (2) and (3) satisfies the Theorem 4 and initial
data u = (u1,u2,u3), w = (w1,w2,w3) are such that ujðxÞ 2 C4ðSð0ÞÞ, wjðxÞ 2 C3ðSð0ÞÞ and for x2S(0) the
following polynomial presentations hold
ujðxÞ ¼
Xp
l¼0

Xp
m¼0

ul;m
j ðx3Þxm1 xl2; j ¼ 1; 2; 3; ð33Þ

wjðxÞ ¼
Xp
l¼0

Xp
m¼0

wl;m
j ðx3Þxm1 xl2; j ¼ 1; 2; 3; ð34Þ
where p is a fixed natural number. The functions uj(x), wj(x), j = 1,2,3 are extended for all x 2 R3 such that
their extensions satisfy (27).
According to Theorems 1–3 there exists a unique classical solution u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) of

(2) and (3) satisfying (28). We note that components of this solution can be presented in the form
ujðx1; x2; x3; tÞ ¼
X1
k¼0

X1
s¼0

Us;k
j ðx3; tÞxs1xk2; ð35Þ
where
Us;k
j ðx3; tÞ ¼

1

s!k!
osþk

oxs1ox
k
2

ujðx1; x2; x3; tÞjx1¼x2¼0; j ¼ 1; 2; 3; s ¼ 0; 1; 2; . . . ; k ¼ 0; 1; 2; . . . ð36Þ
Applying the operator Dc defined by (24) to Eqs. (2) and (3) and denoting
uc
j ¼ Dcuj; uc

j ¼ Dcuj; wc
j ¼ Dcwj; �c

lm ¼ 1
2

ouc
l

oxm
þ ouc

m

oxl

� �
; rc

jk ¼
X3
l;m¼1

Cjklm�
c
lm; ð37Þ
we find
q
o
2uc

j

ot2
¼
X3
k¼1

orc
jk

oxk
; j ¼ 1; 2; 3; x 2 R3; t > 0; ð38Þ

ucðx; 0Þ ¼ ucðxÞ; j ¼ 1; 2; 3; x 2 R3; ð39Þ
j j
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ouc
jðx; tÞ
ot

����
t¼0

¼ wc
jðxÞ; j ¼ 1; 2; 3; x 2 R3: ð40Þ
It follows from (33) and (34) that uc
j � 0, wc

j � 0 for x 2 S(0), c1 > p or c2 > p. Theorems 1–4 are valid for
the problem (38)–(40) because the initial value problem (38)–(40) is similar to (2) and (3). Using Theorems
1–4 we find that uc

jðx; tÞ � 0 for (x, t) 2 C(P), j = 1,2,3 if c1 > p or c2 > p.
This means that functions Us;k

j ðx3; tÞ, j = 1,2,3, defined by (36) satisfy the relations Us;k
j ðx3; tÞ ¼ 0,

j = 1,2,3 for (x3, t) 2 D(P), where
DðP Þ ¼ fðx3; tÞ 2 R2 : ð0; 0; x3; tÞ 2 CðP Þg: ð41Þ

Therefore the solution u = (u1,u2,u3) of (2) and (3) has the polynomial form
ujðx1; x2; x3; tÞ ¼
Xp
k¼0

Xp
s¼0

Us;k
j ðx3; tÞxs1xk2; ðx; tÞ 2 CðPÞ; ð42Þ
where
Us;k
j ðx3; tÞ 2 C2ðDðPÞÞ; j ¼ 1; 2; 3; s; k ¼ 0; 1; 2; . . . ; p: ð43Þ
As a result we proved the following theorem.

Theorem 5. Under above mentioned notations and assumptions the solution u = (u1,u2,u3) of the problem (2)
and (3) may be written in the form (42) and (43).
5. Polynomial solution method (PS-method) for (2) and (3)

According to the Theorem 5 the solution of (2) and (3) has the form (42). The explicit formula for
Up;p

j ðx3; tÞ, j = 1,2,3 and recurrence relations for Us;k
j ðx3; tÞ, j = 1,2,3; s,k = 0,1,2,. . .,p, s < p,k < p will be

found in this section. For finding these recurrence relations the system (2) is written in the form
q
o
2u

ot2
¼ G

o
2u

ox21
þH

o
2u

ox22
þ B

o
2u

ox23
þ F

o
2u

ox1ox2
þD

o
2u

ox1ox3
þ E

o
2u

ox2ox3
; ð44Þ
where
G ¼
c11 c16 c15
c16 c66 c56
c15 c56 c55

2
64

3
75; F ¼

c16 þ c16 c12 þ c66 c14 þ c56
c66 þ c12 c26 þ c26 c46 þ c25
c56 þ c14 c25 þ c46 c45 þ c45

2
64

3
75; ð45Þ

H ¼
c66 c26 c46
c26 c22 c24
c46 c24 c44

2
64

3
75; D ¼

c15 þ c15 c14 þ c56 c13 þ c55
c56 þ c14 c46 þ c46 c36 þ c45
c55 þ c13 c45 þ c36 c35 þ c35

2
64

3
75; ð46Þ

B ¼
c55 c45 c35
c45 c44 c34
c35 c34 c33

2
64

3
75; E ¼

c56 þ c56 c46 þ c25 c36 þ c45
c25 þ c46 c24 þ c24 c23 þ c44
c45 þ c36 c44 þ c23 c34 þ c34

2
64

3
75: ð47Þ
Consider the initial value problem (44) and (3) in which u = (u1,u2,u3), w = (w1,w2,w3) satisfy (33) and
(34).
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5.1. Finding Up;p(x3; t)¼ (Up;p
1 (x3; t);U

p;p
2 (x3; t);U

p;p
3 (x3; t))

Differentiating (44) and (3) p times with respect to x1 and then p times with respect to x2 and using the
formula (36) we get the system
q
o2Up;p

ot2
¼ B

o2Up;p

ox23
; ðx3; tÞ 2 DðP Þ; ð48Þ
with initial conditions
Up;pjt¼0 ¼ up;pðx3Þ;
oUp;p

ot

����
t¼0

¼ wp;pðx3Þ; x3 2 LðP Þ; ð49Þ
where
LðPÞ ¼ fx3 2 R : ðx3; 0Þ 2 DðP Þg; ð50Þ

B is defined by (47) and up,p(x3), w

p,p(x3) are given coefficients of polynomial expansions (33) and (34) of
vector functions u, w. Since C defined by (7) is a real symmetric positive definite matrix then B defined by
(47) is a real symmetric positive definite matrix also. Hence B is congruent to a diagonal matrix of its eigen-
values. That is, there exists an orthogonal matrix Z such that
Z�1BZ ¼ K ¼
k1 0 0

0 k2 0

0 0 k3

2
64

3
75: ð51Þ
Because B is positive definite, real and symmetric its eigenvalues ki, i = 1,2,3 are real and positive.
Setting
Up;p ¼ ZYp;p ð52Þ

in (48) we get
q
o2ZYp;p

ot2
¼ B

o2ZYp;p

ox23
; ðx3; tÞ 2 DðP Þ: ð53Þ
We multiply left-hand side of (53) by Z�1 to obtain
q
o
2Yp;p

ot2
¼ K

o
2Yp;p

ox23
; ðx3; tÞ 2 DðP Þ: ð54Þ� �1
Denoting mj ¼ kj
q

2

, j = 1,2,3 and using d�Alembert formula we can solve the Cauchy problem for (54)
with the following initial data �
Yp;pjt¼0 ¼ Z�1up;pðx3Þ;
oYp;p

ot

���
t¼0

¼ Z�1wp;pðx3Þ; x3 2 LðP Þ: ð55Þ
The explicit solution of (54) and (55) is given by
Y p;p
j ðx3; tÞ ¼

1

2
ðZ�1up;pÞjðx3 � mjtÞ þ ðZ�1up;pÞjðx3 þ mjtÞ
h i

þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp;pÞjðrÞdr;

j ¼ 1; 2; 3; ðx3; tÞ 2 DðPÞ: ð56Þ
Using (52) and (56) we find
Up;p
i ðx3; tÞ ¼

X3
j¼1

Zij
1

2
ðZ�1up;pÞjðx3 � mjtÞ þ ðZ�1up;pÞjðx3 þ mjtÞ
h i

þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp;pÞjðrÞdr

( )
;

i ¼ 1; 2; 3; ðx3; tÞ 2 DðP Þ; ð57Þ
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where Zij, i,j = 1,2,3 are elements of the matrix Z.

5.2. Finding Up�1; p(x3, t) and Up; p�1(x3, t)

In this subsection we suppose that Up;p
i ðx3; tÞ, i = 1,2,3 were found by (57). Differentiating (44) and (3)

p�1 times with respect to x1 and p times with respect to x2 and using the formula (36) we obtain the system
q
o
2Up�1;p

ot2
¼ B

o
2Up�1;p

ox23
þ pD

oUp;p

ox3
; ðx3; tÞ 2 DðP Þ; ð58Þ
with initial conditions
Up�1;p��
t¼0 ¼ up�1;pðx3Þ;

oUp�1;p

ot

����
t¼0

¼ wp�1;pðx3Þ; x3 2 LðP Þ; ð59Þ
where up�1,p(x3), w
p�1,p(x3) are given coefficients of (33) and (34). Differentiating (44) and (3) p times with

respect to x1 and p�1 times with respect to x2 we find
q
o2Up;p�1

ot2
¼ B

o2Up;p�1

ox23
þ pE

oUp;p

ox3
; ðx3; tÞ 2 DðPÞ; ð60Þ

Up;p�1��
t¼0 ¼ up;p�1ðx3Þ;

oUp;p�1

ot

����
t¼0

¼ wp;p�1ðx3Þ; x3 2 LðP Þ; ð61Þ
where up,p�1(x3), w
p,p�1(x3) are given coefficients of (33) and (34).

Applying the diagonalization process which was described in Section 5.1 and setting
Up�1;p ¼ ZYp�1;p; ð62Þ

Up;p�1 ¼ ZYp;p�1 ð63Þ

we find
q
o2Yp�1;p

ot2
¼ K

o2Yp�1;p

ox23
þ p ~D

oYp;p

ox3
; ðx3; tÞ 2 DðPÞ; ð64Þ

Yp�1;p��
t¼0 ¼ Z�1up�1;pðx3Þ; x3 2 LðPÞ; ð65Þ

oYp�1;p

ot

����
t¼0

¼ Z�1wp�1;pðx3Þ; x3 2 LðPÞ; ð66Þ
and
q
o2Yp;p�1

ot2
¼ K

o2Yp;p�1

ox23
þ p~E

oYp;p

ox3
; ðx3; tÞ 2 DðP Þ; ð67Þ

Yp;p�1��
t¼0 ¼ Z�1up;p�1ðx3Þ; x3 2 LðPÞ; ð68Þ

oYp;p�1

ot

����
t¼0

¼ Z�1wp;p�1ðx3Þ; x3 2 LðPÞ; ð69Þ
from (58), (59) and (60), (61), respectively. Here
~D ¼ Z�1DZ; ~E ¼ Z�1EZ: ð70Þ
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Using d�Alembert�s formula for (64)–(66) and (67)–(69) and (62), (63) we find for (x3, t) 2 D(P) the fol-
lowing formulas:
Up�1;p
i ðx3; tÞ ¼

X3
j¼1

Zij
p
2qmj

Z t

0

Z x3þmjðt�sÞ

x3�mjðt�sÞ
~D Z�1 oU

p;p

ox3

� �� �
j

ðr; sÞdrds þ 1
2

ðZ�1up�1;pÞjðx3 � mjtÞ
h(

þðZ�1up�1;pÞjðx3 þ mjtÞ
i
þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp�1;pÞjðrÞdr

)
; i ¼ 1; 2; 3; ðx3; tÞ 2 DðP Þ;

ð71Þ

Up;p�1
i ðx3; tÞ ¼

X3
j¼1

Zij
p
2qmj

Z t

0

Z x3þmjðt�sÞ

x3�mjðt�sÞ
~E Z�1 oU

p;p

ox3

� �� �
j

ðr; sÞdrds þ 1
2

ðZ�1up;p�1Þjðx3 � mjtÞ
h(

þðZ�1up;p�1Þjðx3 þ mjtÞ
i
þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp;p�1ÞjðrÞdrg; i ¼ 1; 2; 3; ðx3; tÞ 2 DðP Þ:

ð72Þ
These are formulas for finding Up�1;p
i ðx3; tÞ, Up;p�1

i ðx3; tÞ, i = 1,2,3 via Up;p
j (x3, t), (x3, t) 2 D(P).
5.3. Finding Us;k(x3, t), s,k = 0,1, . . ., p�1
5.3.1. Case s = p�1, k = p�1
Applying the operator o2p�2

oxp�1
1

oxp�1
2

to (44) and (3) and using (33), (34) and (36) we find
q
o2Up�1;p�1

ot2
¼ B

o2Up�1;p�1

ox23
þ pD

oUp;p�1

ox3
þ pE

oUp�1;p

ox3
þ p2FUp;p; ðx3; tÞ 2 DðP Þ; ð73Þ

Up�1;p�1��
t¼0 ¼ up�1;p�1ðx3Þ; x3 2 LðPÞ; ð74Þ

oUp�1;p�1

ot

����
t¼0

¼ wp�1;p�1ðx3Þ; x3 2 LðPÞ; ð75Þ
where up�1,p�1(x3), w
p�1,p�1(x3) are given coefficients of (33) and (34), B, D, E, F are given by (45)–(47).

The solution of (73)–(75) is given by
Up�1;p�1
i ¼

X3
j¼1

Zij
1

2qmj

Z t

0

Z x3þmjðt�sÞ

x3�mjðt�sÞ
p ~D Z�1 oU

p;p�1

ox3

� �
þp~E Z�1oU

p�1;p

ox3

� �
þp2~F Z�1Up;p

� �� �
j

ðr;sÞdrds
(

þ1
2

ðZ�1up�1;p�1Þjðx3� mjtÞþðZ�1up�1;p�1Þjðx3þ mjtÞ
h i

þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp�1;p�1ÞjðrÞdr

)
; i¼ 1;2;3; ðx3; tÞ 2DðP Þ; ð76Þ
where ~D, ~E are defined by (70) and
~F ¼ Z�1FZ: ð77Þ



5.3.2. Cases k = p, s = p � m, m = 2, . . ., p
Applying the operator o2p�m

oxp�m
1

oxp
2
to (44) and (3) for m = 2,. . .,p successively and using (33), (34) and (36) we

find
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q
o
2Up�m;p

ot2
¼ B

o
2Up�m;p

ox23
þ ðp � mþ 1ÞD oUp�mþ1;p

ox3
þ ðp � mþ 1Þðp � mþ 2ÞGUp�mþ2;p;

ðx3; tÞ 2 DðPÞ; ð78Þ

Up�m;pjt¼0 ¼ up�m;pðx3Þ; x3 2 LðP Þ; ð79Þ

oUp�m;p

ot

����
t¼0

¼ wp�m;pðx3Þ; x3 2 LðP Þ; ð80Þ
where up�m,p(x3), w
p�m,p(x3) are given coefficients of (33) and (34); B, D, G are given by (45)–(47).

The solutions of (78)–(80) are given by formulas
Up�m;p
i ðx3; tÞ¼

X3
j¼1

Zij
ðp�mþ1Þ
2qmj

Z t

0

Z x3þmjðt�sÞ

x3�mjðt�sÞ
~D Z�1oU

p�mþ1;p

ox3

� ��(

þðp�mþ2Þ~G Z�1Up�mþ2;p� ��
j

ðr;sÞdrdsþ1
2

ðZ�1up�m;pÞjðx3�mjtÞþðZ�1up�m;pÞjðx3þmjtÞ
h i

þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp�m;pÞjðrÞdr

)
; i¼1;2;3; ðx3;tÞ2DðPÞ; m¼2; . .. ;p; ð81Þ
where ~D and ~F are given by (70) and (77), and
~G ¼ Z�1GZ: ð82Þ
5.3.3. Cases s = p, k = p � m, m = 2,. . .,p
Taking the derivative of (44) and (3) p times with respect to x1, p�m times with respect to x2 and using

(33), (34) and (36) we get
q
o
2Up;p�m

ot2
¼ B

o
2Up;p�m

ox23
þ ðp � mþ 1ÞE oUp;p�mþ1

ox3
þ ðp � mþ 1Þðp � mþ 2ÞHUp;p�mþ2;

ðx3; tÞ 2 DðPÞ; ð83Þ

Up;p�mjt¼0 ¼ up;p�mðx3Þ; x3 2 LðP Þ; ð84Þ

oUp;p�m

ot

����
t¼0

¼ wp;p�mðx3Þ; x3 2 LðP Þ; ð85Þ
where up,p�m(x3), w
p,p�m(x3) are given coefficients of (33) and (34); B, E, H are given by (46) and (47).

The solution of (83)–(85) is given by
Up;p�m
i ðx3; tÞ ¼

X3
j¼1

Zij
ðp � mþ 1Þ

2qmj

Z t

0

Z x3þmjðt�sÞ

x3�mjðt�sÞ
~E Z�1 oU

p;p�mþ1

ox3

� ��(

þðp � mþ 2Þ ~H Z�1Up;p�mþ2� ��
j

ðr; sÞdrds þ 1
2
½ðZ�1up;p�mÞjðx3 � mjtÞ

þðZ�1up;p�mÞjðx3 þ mjtÞ� þ
1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp;p�mÞjðrÞdr

)
;

i ¼ 1; 2; 3; ðx3; tÞ 2 DðPÞ; m ¼ 2; . . . ; p; ð86Þ
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where ~E is given by (70) and
~H ¼ Z�1HZ: ð87Þ
5.3.4. Cases s = p � m, k = p � n, m, n = 2,. . .,p
Taking the derivative of (44) and (3) p � m times with respect to x1, p � n times with respect to x2 and

using (33), (34) and (36) we get
q
o
2Up�m;p�n

ot2
¼ B

o
2Up�m;p�n

ox23
þ ðp � mþ 1ÞD oUp�mþ1;p�n

ox3
þ ðp � nþ 1ÞE oUp�m;p�nþ1

ox3

þ ðp � mþ 1Þðp � nþ 1ÞFUp�mþ1;p�nþ1 þ ðp � mþ 1Þðp � mþ 2ÞGUp�mþ2;p�n

þ ðp � nþ 1Þðp � nþ 2ÞHUp�m;p�nþ2; ðx3; tÞ 2 DðPÞ; ð88Þ

Up�m;p�njt¼0 ¼ up�m;p�nðx3Þ; x3 2 LðP Þ; ð89Þ

oUp�m;p�n

ot

����
t¼0

¼ wp�m;p�nðx3Þ; x3 2 LðPÞ; ð90Þ
where up�m,p�n(x3), w
p�m,p�n(x3) are given coefficients of (33) and (34); B, D, G, E, F, H are given by (45)–

(47).
The solution of (88)–(90) is given by
Up�m;p�n
i ðx3;tÞ¼

X3
j¼1

Zij
1

2qmj

Z t

0

Z x3þmjðt�sÞ

x3�mjðt�sÞ
ðp�mþ1Þ~D Z�1oU

p�mþ1;p�n

ox3

� ��(

þðp�nþ1Þ~E Z�1oU
p�m;p�nþ1

ox3

� �
þðp�mþ1Þðp�nþ1Þ~F Z�1Up�mþ1;p�nþ1� �

þðp�mþ1Þðp�mþ2Þ~G Z�1Up�mþ2;p�n
� �

þðp�nþ1Þðp�nþ2Þ ~H Z�1Up�m;p�nþ2� ��
j

ðr;sÞdrds

þ1
2

ðZ�1up�m;p�nÞjðx3�mjtÞþðZ�1up�m;p�nÞjðx3þmjtÞ
h i

þ 1

2mj

Z x3þmjt

x3�mjt
ðZ�1wp�m;p�nÞjðrÞdr

)
; i¼1;2;3; ðx3;tÞ2DðPÞ; m;n¼2;...;p; ð91Þ
where ~D, ~E, ~F, ~G, ~H are given before.
6. PS-method correctness and simulation examples

In this section we present numerical examples that demonstrate the correctness and efficiency of the pro-
posed approach. We consider an example of the Cauchy problem for the isotropic elastic system to show
the correctness of PS-method described in the previous section. The reason to use here the isotropic medium
is the following. We know that the solution of the Cauchy problem only for isotropic elasticity may be
found by a reduction of the initial value problem of elasticity to the initial value problems of wave equa-
tions for scalar and vector elastic potentials (Tikhonov and Samarskii, 1963). This is well known classical
method which we will call SVP (scalar and vector potentials) method. SVP-method is completely different
from PS-method. The correctness of the proposed approach is established by the comparison of solutions
found by these two different methods.
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In this section there are several examples of numerical solutions of initial value problems for different
cases of anisotropy for the same initial data. These examples show the robustness of the proposed method
for the simulation of wave propagation in anisotropic media.

6.1. Test of PS-method correctness

Let us construct a solution of the Cauchy problem for an isotropic elastic system using the wave equa-
tions for the scalar and vector elastic potentials.
Let q = 2.203 and matrix C = (Cmn)6·6 be the matrix with the following elements:
C11 ¼ C22 ¼ C33 ¼ k þ 2l; C12 ¼ C23 ¼ C13 ¼ k; C44 ¼ C55 ¼ C66 ¼ l; k ¼ 1:61; l ¼ 3:12:

Other elements of the matrix C are equal to zero. Let us consider the scalar functions g(x), h(x) and vector
functions g(x), h(x) which are defined as follows:
gðxÞ ¼ x31x
3
2 sin x3 þ x1x2 cos x3; hðxÞ ¼ x31x

3
2 sin x3 þ x1x2 sin x3;

gðxÞ ¼ ðg1; g2; g3Þ; hðxÞ ¼ ðh1; h2; h3Þ;
g1ðxÞ ¼ x61x

6
2 sin x3; h1ðxÞ ¼ x51x

5
2 sin x3;

g2ðxÞ ¼ x61x
5
2 cos x3; h2ðxÞ ¼ x51x

4
2 cos x3;

g3ðxÞ ¼ x51x
5
2 sin x3; h3ðxÞ ¼ x61x

5
2 sin x3:

ð92Þ
Applying operators of gradient $x to g(x) and h(x), and curlx to g(x) and h(x), we find explicitly the fol-
lowing vector functions
uðxÞ ¼ rxgðxÞ þ curlxgðxÞ; ð93Þ

wðxÞ ¼ rxhðxÞ þ curlxhðxÞ: ð94Þ

The 3-D images of second components of u(x) and w(x) for x2 = 10 are shown on the left- and right-

hand sides of Fig. 1.
Let the function v(x, t) be a solution of the following Cauchy problem for the scalar wave equation
q
o
2vðx; tÞ
ot2

¼ ðk þ 2lÞDxvðx; tÞ; x 2 R3; t > 0; ð95Þ

vjt¼0 ¼ gðxÞ; ov
ot

����
t¼0

¼ hðxÞ; x 2 R3; ð96Þ
and the vector-function w(x, t) be a solution of the following Cauchy problem for the vector wave equation
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Fig. 1. The second components of initial vector functions: (a) u2(x1,10,x3) and (b) w2(x1,10,x3).
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q
o2wðx; tÞ

ot2
¼ lDxwðx; tÞ; x 2 R3; t > 0; ð97Þ

wjt¼0 ¼ gðxÞ; ow

ot

����
t¼0

¼ hðxÞ; x 2 R3: ð98Þ
Then the vector-function
uðx; tÞ ¼ rxvðx; tÞ þ curlxwðx; tÞ ð99Þ

will be a solution of the Cauchy problem for the following system of isotropic elasticity:
q
o2uðx; tÞ

ot2
¼ ðk þ 2lÞrxdivxuðx; tÞ � lcurlxcurlxuðx; tÞ; x 2 R3; t > 0; ð100Þ

ujt¼0 ¼ uðxÞ; ou

ot

����
t¼0

¼ wðxÞ; x 2 R3; ð101Þ
where u(x), w(x) are defined by (93) and (94).
The Cauchy problem (100) and (101) is the main object of this subsection. The solution of (100) and

(101) was found numerically by the formula (99) in which $xv(x, t) and curlxw(x, t) were defined by the fol-
lowing rules. The solution v(x, t) of (95) and (96) we find in the following form by Kirchhoff�s formula and
spherical coordinates
vðx; tÞ ¼ 1

4p

Z 2p

0

Z p

0

o

ot
tgðxþ atmÞð Þ þ thðxþ atmÞ

� �
dxm; ð102Þ
where
a2 ¼ k þ 2l
q

; m ¼ ðm1; m2; m3Þ;

m1 ¼ cos c sin h; m2 ¼ sin c sin h; m3 ¼ cos h;
06 c < 2p; 0 < h < p; dxm ¼ sin hdhdc:

ð103Þ
Using (102) we find $xv(x, t) as follows:
rxvðx; tÞ ¼
1

4p

Z 2p

0

Z p

0

rx
o

ot
tgðxþ atmÞð Þ þ thðxþ atmÞ

� �
dxm: ð104Þ
We note that the partial derivatives of integrands and integrals with respect to w were found analytically
using Maple 7, and then integrals with respect to h were calculated using the trapezoid rule. Applying curlx
to the Kirchhoff�s formula for the solution w(x, t) of (97) and (98) we find
curlxwðx; tÞ ¼
1

4p

Z 2p

0

Z p

0

curlx
o

ot
ðtgðxþ atmÞÞ þ thðxþ atmÞ

� �
dxm: ð105Þ
The calculation of (105) is similar to (104), the partial derivatives of integrands are found analytically using
Maple 7, and then integrals are calculated. From the other hand the solution of (100) and (101) can be
found numerically using PS-method. As a result of it we have two different numerical methods for the solu-
tion of the same Cauchy problem (100) and (101). 3-D images of u2(x, t) for fixed x2 and different values of
time variable are shown in Fig. 2. Here the horizontal axes are x1 and x3, the vertical axis is u2-axis for
x2 = 10 and t = 2, t = 15, t = 20, respectively. The left-hand side column of images is obtained by SVP-
method, the right-hand side column corresponds to PS-method. Tables 1–3 contain numerical results in
numbers for û2ð3; 10; x3; tÞ ¼ u2ð3; 10; x3; tÞ 	 10�11 found by SVP-method and PS-method for x3 = �10,
x3 = �5, x3 = 0, x3 = 5, x3 = 10 and different values of t: t = 2 (Table 1), t = 15 (Table 2), t = 20 (Table 3).
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Fig. 2. 3-D images of u2(x1,10,x3, t) found by SVP and PS methods for t = 2, t = 15, t = 20: (a) SVP-method, t = 2, (b) PS-method,
t = 2, (c) SVP-method, t = 15, (d) PS-method, t = 15, (e) SVP-method, t = 20 and (f) PS-method, t = 20.
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The similar images and tables we can find for other two components u1(x, t), u3(x, t) and different values
x, t. We confirm the correctness of PS-method by the comparison of these images and numerical results.

6.2. Simulation examples of wave propagations in anisotropic media by PS-method

The initial value problem (2) and (3) for several cases of C, q and the same initial functions is solved
numerically. The visualization of numerical solutions of these problems are presented in figures below.
The initial functions here are given by the following relations:
u ¼ ðu1;u2;u3Þ; w ¼ ðw1;w2;w3Þ;
uj ¼ pðx1Þpðx2Þpðx3Þ; wj � 0; j ¼ 1; 2; 3;

ð106Þ
where
pðzÞ ¼ 2:49961� 2:59991z2 þ 0:806848z4 � 0:117057z6 þ 0:00941347z8 � 0:000439476z10

þ 0:0000112076z12 � 1:20324	 10�7z14:

The function p(z) here was found by Mathematica 4 as an interpolating polynomial of
f ðzÞ ¼ 1
z
sin

5z
2

� �
ð107Þ
in the interval [�5,5] with 16 points.



Table 1
Numerical comparison of SVP and PS methods (t = 2)

x3 û2 (SVP) û2 (PS) jû2ðSVPÞ � û2ðPSÞj
�10 �0.05209188934 �0.05209155134 0.000000338
�5 0.01053475910 0.01053471708 0.00000004202
0 0.05806851491 0.05806815303 0.00000036188
5 0.02240892456 0.02240876131 0.00000016325
10 �0.04535538582 �0.04535511670 0.00000026912

Table 2
Numerical comparison of SVP and PS methods (t = 15)

x3 û2 (SVP) û2 (PS) jû2ðSVPÞ � û2ðPSÞj
�10 �4.128852746 �4.128855306 0.00000256
�5 1.208141473 1.208142533 0.00000106
0 4.814261476 4.814264009 0.000002533
5 1.523105374 1.523106767 0.000001393
10 �3.950166243 �3.950168420 0.000002177

Table 3
Numerical comparison of SVP and PS methods (t = 20)

x3 û2 (SVP) û2 (PS) jû2ðSVPÞ � û2ðPSÞj
�10 �8.955222938 �8.955253915 0.000030977
�5 2.721805168 2.721813295 0.000008127
0 10.49937635 10.49940493 0.00002858
5 3.234737115 3.234755002 0.000017887
10 �8.664219403 �8.664249582 0.000030179
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Let ðx1; x2; x3Þ 2 R3 be space variables and one of these variables be fixed, for example x2 = 0. The three-
dimensional graph of each function uj(x) has a hillock shape which is shown in Fig. 3. The horizontal axes
here are x1, x3, the vertical axis is uj for x2 = 0. In Fig. 3 level plots of the same surface are shown. The
different colors correspond to different levels of the surface.
Fig. 3. The third component of initial vector function: (a) 3-D level plot of uj(x1,0,x3) and (b) 2-D level plot of uj(x1,0,x3).
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Let us consider now two Cauchy problems (2) and (3) with the same initial vector-functions u, w, which
are given by (106), for the following two cases of the matrix C and q.
Case 1 corresponds to q = 4.64 and the matrix C = (Cmn)6·6 elements of which are defined as
Fig. 4. u1(x, t) for orthorhombic media: (a) t = 0.5, (b) t = 1 (c), t = 1.5, (d) t = 2, (e) t = 2.5 and (f) t = 3.

Fig. 5. u1(x, t) for tetragonal media: (a) t = 0.5, (b) t = 1, (c) t = 1.5, (d) t = 2, (e) t = 2.5 and (f) t = 3.
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C11 ¼ 3:01; C12 ¼ 1:61; C13 ¼ 1:11;
C22 ¼ 5:8; C23 ¼ 0:80; C33 ¼ 4:29;
C44 ¼ 1:69; C55 ¼ 2:06; C66 ¼ 1:58;

ð108Þ
other elements are equal to zero. Case 1 is relative to materials with the orthorhombic structure.
Case 2 is given by q = 7.28 and the matrix C = (Cmn)6·6 of the form
C11 ¼ C22 ¼ 4:53; C12 ¼ 4:00;
C13 ¼ C23 ¼ 4:15; C33 ¼ 4:51;
C44 ¼ C55 ¼ 0:651; C66 ¼ 1:21;

ð109Þ
other elements are equal to zero. Case 2 corresponds to the materials with the tetragonal structure.
The solutions of the Cauchy problem (2) and (3) with initial functions (106) for these two cases of C, q

were found by PS-method numerically. In Cartesian coordinates x1, x3 we plot the values of u1 for x2 = 0
and t = constant as rectangular array of cells with colors on a surface. Different colors correspond to dif-
ferent values of u1(x1,0,x3, t), t = constant (different level of points on the surface). In Figs. 4 and 5 these
plots are shown for t = 0.5, t = 1, t = 1.5, t = 2, t = 2.5, t = 3.
Two other components can be represented by the colored images as well. We can see from the pictures

how the wave propagations in different anisotropic media depend on the type of anisotropy.
7. Conclusion

In this paper we have considered the initial value problem (IVP) for the linear anisotropic elastic system.
The theory, the method of solving this IVP and the simulation of the elastic wave propagation using this
method have been studied. The existence and uniqueness theorems for weak and smooth solutions have
been proved by the reduction of IVP for the original system to IVP for symmetric hyperbolic system of
the first order. All our arguments can be directly generalized for non-homogeneous linear elastic system
with smooth function coefficients depending on space and time variables. We have proved the theorem say-
ing that the solution of IVP for the linear anisotropic elastic system has a polynomial form with respect to
lateral variables if initial data are polynomials with respect to the same lateral variables.
This theorem gives an opportunity to get a method of the IVP solution for linear anisotropic elastic sys-

tem. The central point of our paper is the description of this method which we called Polynomial Solution
method (PS-method). Using this method we have found a solution of IVP for linear anisotropic elastic sys-
tem in the conoid of dependence. We note here that the polynomial structure of the solution for IVP with
polynomial data and PS-method can be generalized for the non-homogeneous elastic anisotropic system
with function coefficients depending on x3 (vertical) variable only. This generalization was omitted in
our paper to make it more simple. We have shown by numerical examples that the PS-method is robust
for the simulation of elastic wave propagation in anisotropic media for the case when the initial data are
polynomials with respect to lateral variables.
We note that if the initial data contain continuous functions which are not polynomials we can approx-

imate them by polynomials and then PS-method can be applied to find an approximate solution. The cor-
rectness to use PS-method for the solution of IVP for linear anisotropic elasticity with non-polynomial
initial data is the topic of our further study.
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Appendix A. Matrix theory facts

This appendix contains several classical facts from matrix theory (Goldberg, 1992).

Theorem 6. Let C be a real symmetric positive definite matrix of the size m·m, where m is an arbitrary

positive integer. Then C�1 is a real symmetric positive definite matrix.

Proof. Since C�1C = CC�1 = I, using the symmetry property of C and the rule (AB)* = B*A* we get
I = C(C�1)*. Multiplying both sides of the last equality by C�1 from left-hand side we get C�1 = (C�1)*

which implies symmetry property of C�1. A matrix is positive definite if and only if its eigenvalues are pos-
itive. Using this fact we find that C�1 is positive definite. h

Theorem 7. Let C be a real symmetric positive definite matrix of the size m·m, where m is an arbitrary pos-

itive integer. Then there exists a real symmetric positive definite matrix M such that C�1 = M2.

Proof. According to Theorem 6, C�1 is real symmetric positive definite and is congruent to a diagonal
matrix of its eigenvalues. That is, there exists an orthogonal matrix Q such that
Q
C�1Q ¼ K; Q
 ¼ Q�1: ðA:1Þ

Since C�1 is positive definite and symmetric, its eigenvalues ki, i = 1,2,. . .,m are real and nonnegative. Let K

1
2

be defined as follows
K
1
2 ¼ diagðk

1
2
i ; i ¼ 1; 2; . . . ;mÞ: ðA:2Þ
Now set M ¼ QK
1
2Q
. Since Q is orthogonal, Q*Q = I, and therefore
M2 ¼ ðQK
1
2Q
ÞðQK

1
2Q
Þ ¼ QKQ
 ¼ C�1: ðA:3Þ
Clearly, M ¼ QK
1
2Q
 is positive definite. h

Theorem 8. Let Aj, S be real symmetric matrices of the size m·m, where m is an arbitrary positive integer.

Then the matrix ~Aj ¼ SAjS is real and symmetric.

Proof. The proof follows from equalities
~A


j ¼ ðSAjSÞ
 ¼ S
ðSAjÞ
 ¼ S
A


jS

 ¼ SAjS ¼ ~Aj: � ðA:4Þ
Appendix B. Some existence and uniqueness theorems of symmetric hyperbolic systems theory

This appendix contains results about existence and uniqueness of the Cauchy problem solution for sym-
metric hyperbolic systems of the first order (Mizohata, 1973). We state here these results in terms and forms
which are convenient for us. We use the same notations of the functional spaces which were given before the
Theorem 1. Moreover the space Cð½0; T �;X Þ and the Sobolev space HkðR3Þ are defined as follows. Let X
denote a real Banach space with the norm kÆk. Then the space Cð½0; T �;X Þ consists of all continuous func-
tions u: [0,T]! X with
kukCð½0;T �;X Þ ¼ max
06 t6 T

kuðtÞk < 1: ðB:1Þ
The Sobolev spaceHkðR3Þ consists of all locally integrable functions u : R3 ! R such that for each multi-
index a with jaj 6 k, Dau exists in the weak sense and belongs to L2ðR3Þ.
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Consider the initial value problem for the symmetric hyperbolic system
oV

ot
þ
X3
j¼1

~Aj
oV

oxj
¼ fðx; tÞ; x 2 R3; t 2 ð0; T Þ; ðB:2Þ

Vðx; 0Þ ¼ V0; x 2 R3; ðB:3Þ

where T is a fixed positive number, V = (V1,V2, . . .,V9) is the vector function with components Vj = Vj(x, t),
j = 1,2,. . .,9, ~Aj, j = 1,2,3 are real symmetric matrices with constant elements of the order 9·9.
The following theorem is the existence and uniqueness theorem of a weak solution of (B.2) and (B.3).

Theorem 9. Let V0 2 H1ðR3;R9Þ, f 2 Cð½0; T �;H1ðR3;R9ÞÞ. Then (B.2) and (B.3) has a unique solution

V(x, t) such that
V 2 Cð½0; T �;H1ðR3;R9ÞÞ
\

C1ð½0; T �;L2ðR3;R9ÞÞ: ðB:4Þ

The statement and the proof of this theorem can be found in the book Mizohata (1973).

Using the Sobolev lemma (Mizohata, 1973), Theorem 6.4 and corollary (Mizohata, 1973, pp. 335–336)
we obtain the existence and uniqueness theorem for genuine solution of (B.2) and (B.3). This has the form:

Theorem 10. Let V0 2 H3ðR3;R9Þ, f 2 Cð½0; T �;H3ðR3;R9ÞÞ. Then the solution of (B.2) and (B.3) belongs
to the class
Cð½0; T �;C1ðR3;R9ÞÞ
\

C1ð½0; T �;CðR3;R9ÞÞ: ðB:5Þ
Using the multiindex notation (see (24)) and Theorem 10 we find

Theorem 11. Let c = (c1,c2,0) be an arbitrary multiindex, DcV0 2 H3ðR3;R9Þ, Dcf 2 Cð½0; T �;H3ðR3;R9ÞÞ.
Then the solution of (B.2), (B.3) satisfies
DcV 2 Cð½0; T �;C1ðR3;R9ÞÞ
\

C1ð½0; T �;CðR3;R9ÞÞ: ðB:6Þ
Appendix C. Domain of dependence and local uniqueness theorem for symmetric hyperbolic systems

In this appendix we describe several facts of the symmetric hyperbolic systems theory (Courant and Hil-
bert, 1962). These facts are related to the domain of dependence for symmetric hyperbolic systems. We
introduce a space-like lens by the domain of dependence and prove the uniqueness theorem inside of this
lens.
Let x ¼ ðx1; x2; x3Þ 2 R3 be a space variable, t be a time variable. Consider the symmetric hyperbolic sys-

tem of the form
ou

ot
þ
X3
j¼1

Aj
ou

oxj
¼ 0; ðC:1Þ
where Aj, j = 1,2,3 are symmetric matrices with constant elements. Let P be an arbitrary point with coor-
dinates (x0,t0), t0 > 0; C(P) be the conoid of the dependence for the symmetric hyperbolic system (C.1)
(Courant and Hilbert, 1962); RðhÞ be the surfaces consisting of the plane t = h, (0 < h < t0) inside the con-
oid plus the mantle R
ðhÞ of the conoid C(P) between t = 0 and t = h; a space-like lens L(h) be defined as
interior of the surface RðhÞ for 0 6 t 6 h. The boundary oL(h) of the lens L(h) consists of the mantle
R
ðhÞ and two space-like surfaces S(0) and S(h). The surfaces S(0) and S(h) are the parts of the planes
t = 0 and t = h, respectively, inside the conoid C(P).
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There is the following fact for symmetric hyperbolic systems of first order (Courant and Hilbert, 1962)
which we state as a proposition.

Proposition 12. Let h 2 (0,t0) and the mantle R
ðhÞ of the conoid of the dependence C(P) be defined by the

relation U(x, t) = 0, where Uðx; tÞ 2 C1ðR3 	 ½0; h�Þ. Then the characteristic matrix
I
oUðx; tÞ

ot
þ
X3
j¼1

Aj
oUðx; tÞ
oxj

ðC:2Þ
is nonnegative on the mantle R
ðhÞ.

Further we state and prove a lemma about energy inequalities for the solution of (C.1) inside the lens.

Lemma 13. Let T be a positive number, x0 be an arbitrary point of R3, P = (x0,T), C(P) be the conoid of the
dependence for symmetric hyperbolic system (C.1), uðx; tÞ 2 Cð½0; T �;H1ðR3;R3ÞÞ

T
C1ð½0; T �;L2ðR3;R3ÞÞ be

a solution of (C.1). Then the following energy inequality states:
kukSðhÞ 6 kukSð0Þ; ðC:3Þ
where S(h) and S(0) are the parts of the planes t = h and t = 0, respectively, inside the conoid C(P), h 2 (0,T);
kuk2SðhÞ ¼
X3
j¼1

Z
SðhÞ

jujðx; hÞj2 dx: ðC:4Þ
Proof. Consider the conoid of the dependence C(P) and the lens L(h). The boundary oL(h) of the lens may
be presented as oLðhÞ ¼ Sð0Þ [ SðhÞ [ R
ðhÞ, where R
ðhÞ is the mantle of C(P) between t = 0 and t = h.
Consider now the system (C.1) and multiply it by 2u to find
oðu; uÞ
ot

þ
X3
j¼1

oðAju; uÞ
oxj

¼ 0: ðC:5Þ
Integrating the last relation over the lens L(h) we have
Z
LðhÞ

oðu; uÞ
ot

þ
X3
j¼1

oðAju; uÞ
oxj

 !
dxdt ¼ 0: ðC:6Þ
Applying the Gauss formula to the integral we obtain
Z
SðhÞ

ðu; uÞdx�
Z
Sð0Þ

ðu; uÞdxþ
Z

R
ðhÞ

1

jrxUðx; tÞj I
oUðx; tÞ

ot
þ
X3
j¼1

Aj
oUðx; tÞ
oxj

" #
u; u

 !
dS ¼ 0; ðC:7Þ
where Uðx; tÞ 2 C1ðR3 	 ½0; h�Þ is the function such that the surface R
ðhÞ and (0 < h < T) is given by
U(x, t) = 0.
Using the proposition and the last relation we find
kuk2SðhÞ 6 kuk2Sð0Þ: ðC:8Þ
This proves the lemma. h

The following uniqueness theorem follows from this lemma.

Theorem 14. Under the same conditions as were imposed on the Lemma 13, if a solution u(x, t) of (C.1)
vanishes on S(0) it also vanishes on each surface S(h) which forms with S(0) a space-like lens.
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