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Abstract

The main object of this paper is the Cauchy problem for the dynamic system of anisotropic elasticity. Existence and
uniqueness theorems of weak and smooth solutions of this problem are established by the reduction of the original elas-
ticity system into a symmetric hyperbolic system of the first order. The numerical method of the Cauchy problem solv-
ing for anisotropic elastic system with polynomial data is obtained and its correctness is established. The simulations of
the numerical solutions are presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A dynamic mathematical model of wave propagations in anisotropic media is described by a system of
partial differential equations (Dieulesaint and Royer, 1980; Fedorov, 1968; Ting, 1996; Ting et al., 1990).
As is well known the well-posedness of an initial value problem (IVP) is a basic consistency check of the
system for which IVP is considered. The goal to realize that a system of partial differential equations is
reducible to a symmetric hyperbolic system of the first order is natural because in this case there is a chance
to show that this system has a well-posed IVP. The different approaches to analyze systems of elasticity and
magnetoelasticity as hyperbolic systems may be found in the literature (Beig and Schmidt, 2003; Christo-
doulon, 2000; Cohen and Fauqueux, 2003; Duff, 1960; Marsden and Hughes, 1983; Sacks and Yakhno,
1998; Yakhno, 1998 and others).
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Let x = (x1,%,x3) € R*. We assume that R’ is an elastic medium, whose small amplitude vibrations

u(x, 1) = (uy(x, 1), up(x, 1), uz(x, 1)) (1)

are governed by the system of partial differential equations and initial conditions

8214 Jo
612/ Z axjkk = (x1,x0,x3) ERY, >0, j=1,2,3, (2)
Ouj(x,t .
w0 = g0, SOy =123 )
t=0
Here p is the density of the medium,
3
ij = Z Cjklm61m7 ]7k = 172a 3 (4)
I,m=1
is the stress tensor,
1 /Ou; Ou,
m==|=—+=—], Ilm=12]73 5
K 2<6xm+6x1> " )

is the strain tensor, and {C]klm} ikim—1 are the elastic moduli of the medium, ¢,(x), ¥(x), j=1,2,3 are
smooth functions. We assume that p and Cy,, are constants.
It is convenient and customary to describe the elastic moduli in terms of a 6x6 matrix according to the

following conventions relating a pair (j, k) of indices j,k =1,2,3 to a single index a =1,...,6:
(L) <1, (2,2) <=2, (3,3 <3, (2,3),(3,2) <4, (1,3),(3,1) «
(1,2),(2,1) < 6. (6)

This correspondence is possible due to the symmetry properties Cix, = Cijim = Cirs. The additional sym-
metry property Cig, = Cjpyp implies that the matrix

C = (Caploxs (7)

of all moduli where « = (jk), = (Im), is symmetric. We will assume also that p>0 and the matrix (C,p)exe 1S
positive definite.

In this paper we analyze relations (2)—(5) from two points of view. The first one is the following. The
equalities (2) and (4) are written in the form of a symmetric hyperbolic system of the first order. Using
the theory of the Cauchy problems for symmetric hyperbolic systems (Mizohata, 1973) we obtain the gen-
eral theoretical results: existence and uniqueness theorems of weak and smooth solutions of the initial value
problem (2) and (3). Sections 2 and 3 contain these results. The second view point is related with the anal-
ysis of relations (2) and (4) as the Cauchy problem for the second order hyperbolic equations system with
the polynomial initial data. As a result of this analysis we show in Section 4 that the solution of (2) and (3)
is a polynomial with respect to the lateral variables if the initial data are polynomials relative to the same
variables. To find a solution of the initial value problem (2) and (3) with polynomial data we specified a
procedure of the polynomial coefficients recovery. This procedure we called polynomial solution method
(PS-method). This method is described in Section 5. The correctness of this method and simulations of
the numerical solutions of the Cauchy problems for anisotropic elastic system are given in Section 6. In
conclusion some generalizations and remarks on our research are described. At the end of the paper there
are appendices containing facts from the theory of symmetric hyperbolic systems of the first order and ma-
trix theory in the form and volume that are convenient for us.
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2. System of elasticity as a symmetric hyperbolic system

We show here that relations (2) and (4) may be written as a symmetric hyperbolic system.
Let
Ou;
U=—, i=1273. 8
o ! (8)
Using the rule (6) we denote a pair (j, k) of indices j,k = 1,2,3 as a single index o, « =1,2,...,6. This cor-
respondence is possible to make for o, and €; because of the symmetry properties oy = 0y, € = €.
We have

T= (0170-250-%0-470-570-6)*7 € = (€|7€2a€3764)657€6)*' (9)

Here * is the sign of transposition.

Let
U: (U],Uz,U_g)*, Y: (61,62,63,264,265,266)*. (10)
Consider now system (2). Using vectors U and T this system may be written in another form as follows:
U &~ ., 0T
— A, —=0, 11
ot M ()
where
-1 000 0 O 0 0 0 0 0 -1 00 0 0 —-10
Al={0 000 0 —1f, Ay={0 -1 0 0 0, A;j={00 0 -1 0 0
0 000 -1 0 0 0 0 -10 00 -1 0 0 O
(12)
Consider the relation (4). Using vectors T and Y this relation can be written as
T = CY, (13)
where C is defined by (7). Differentiating (13) with respect to ¢ and multiplying both sides by C~' we find
oT oY
c'—=— 14
o o’ (14)
where C™! is the inverse matrix to C. Using the relations
L/ ERT R T L B LS
or  Ox; ot Ox;  Oxp (1)
0 U Uy 0 _3U) s
ot o 6x3 axl ’ ot - a)Q 6x1 ’
the system (14) may be written as
G SR ou
c'— Ay —=0 16
where (Ajl.)*,jz 1,2,3 are adjoint matrices to Ajl.,j: 1,2,3.
The relations (11) and (16) can be presented by a single system as
V<, OV
Ay— A—=0 17
0ot A o (17)

=1
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where A, = diag(pl;,C ') is the block-diagonal matrix,

U 0,; Al
Yo <T> b=

1, j=1,2,3. 18
A OG,J J (18)
Here and further I, is the unit matrix of the order mxm and 0,,, is the zero matrix of the order /xm.

To show that the system (17) is transformed into the following form:

AV S~ - oV
]9__|_2:A,_V.:()7 (19)

where A,-, j=1,2,3 are symmetric, we use two facts of matrix theory. The first one says that for the sym-
metric positive definite matrix C there exists a symmetric positive definite matrix M such that C~' = M?
(see Theorems 6, 7 of Appendix A). The second fact explains that the matrix M ', which is inverse to
M, is symmetric (see Theorem 6 of Appendix A). Considering now (17) and multiplying it by the matrix

1
S — p2ls 03.6] (20)
065 M~
from the left-hand side we find (19), where
A, =SASS, V=S8V (21)

We note that Aj, j=1,2,3 are still symmetric (see Theorem 8 of Appendix A).

3. Existence and uniqueness theorems for (2) and (3)

In this section the existence and uniqueness theorems for the weak and smooth solutions of the initial
value problem (2) and (3) are described. These results follow from the reduction of (2) to the symmetric
hyperbolic system (19) and the theory of symmetric hyperbolic systems (Evans, 1998; Mizohata, 1973),
(see also Appendix B).

Using notations and reasoning of the Sections 1, 2 and equalities

3
do,(x
U,'(X, O) = lrbi(x)a 6jk|t:0 = Z Cjklm%()a i7j7k = 1a2737 (22)

I.m=1
we obtain from (2)—(5) the initial value problem for (19) with known data
V(x,0) = V'(x), xeR. (23)

The theory of symmetric hyperbolic systems of the first order gives a chance to get the existence and unique-
ness theorems for the Cauchy problem (19) and (23). We describe these existence and uniqueness theorems
for weak and smooth solutions in Appendix B in a form which is convenient for us (see Theorems 9-11).
These theorems may be written in terms of the original problem (2) and (3) as we state below. For state-
ments of these theorems we will use the following notation. The spaces #*(R*; R), ¢*(R*; R?), #*(R*; R?),
(k=0,1,2,...) consist of all vector functions w= (w;,w,,w3) such that w; belongs to Z*(R’), ¢*(R%),
HH(RY), j=1,2,3, respectively. Here %*(R?) is the space of all k times continuously differentiable func-
tions; #*(R?) is Sobolev space (Evans, 1998), (see also Appendix B) and Z*(R*) = #°(R?), 4(R*) =
%"(R?). The spaces %'([0, T]; #*(R*;R*)), 4'([0, T]; " (R*;R*)) are the spaces of all / times continuously
differentiable functions with respect to ¢ such that u: [0,7] — #*(R*R*) and u: [0,7] — %*(R*;R?),
respectively. Let y;, i = 1,2 be nonnegative integer numbers,



V.G. Yakhno, H.K. Akmaz | International Journal of Solids and Structures 42 (2005) 855-876 859

o
V= (V17y270)7 b)| =71+ Y2 D' = axnax (24)

The following existence and uniqueness theorem for weak solution of (2) and (3) is obtained from symmet-
ric hyperbolic system theory of the first order (see Theorem 9 of Appendix B) which we apply to the Cauchy
problem (19) and (23).

Theorem 1. Let ¢(x) € #2(R* R?),¢(x) € #1(R*R3), T be a fixed positive number; p,{Cjkl,,,}iMm:l
satisfy conditions mentioned in Section 1. Then there exists a unique weak solution u(x,t) of the initial value
problem (2) and (3) such that

u(x,7) € 6'([0, T); #' (R% RY)) () 6°((0, T); £°(R*; RY)),
(25)

a/kfz k,ma”’“ € %([0, T); 2 () () €0, T); Z*(RY)).

I.m=1

The following theorem is found from the Theorem 11 in Appendix B which we apply to (19) and (23).

Theorem 2. Let y = (y1,72, 0) be an arbitrary multiindex, T be a fixed positive number; p, {Cjklm}j',k,z,mzl
satisfy  conditions  mentioned in  Section 1; @, W be wvector functions such that
D'o(x) € #*(R* R?), D'y(x) € #°(R* R3). Then the weak solution u(x,t) of (2) and (3) satisfies the
following properties:

D'u(x,1) € 6 ([0, T]; 6" (R R)) () 6([0, T]; 4 (R*; RY)),

Doy = 3" Cun o & (0, 716 (@) ()60, Tl 6 (),

I,m=1 m

where D7 is defined by (24).

(26)

Applying Theorem 2 for the cases y = (y1,72,0), y1 + 7. =0,1,2,3,... we obtain the following theorem.

Theorem 3. Ler ¢(x) = ((Pl(x) $2(X),03(X)), Y(x) = (Y1(X),Y2(X),Y3(X)) satisfy
¢,(x) € 6 (R: G (R) () 4(RY),

e 27
V;(x) € 6, (R: 6N (R) (47 (RY),j = 1,2,3, @7
then the weak solution u(x, 1) = (ui(x, t),us(x, H),us(x, 1)) of (2) and (3) is a classical solution and
w(x, 1) € 67 (R H), k=123, (28)
o € %j]oxz( iH), j,k=1,2,3, (29)
where
H =%'((0,T); 4" (R)) [ €*([0, T}; 4(R)). (30)

The following theorem is related to the uniqueness of the solution for the initial value problem inside the
conoid of the dependence. Appendix C contains the definition of the dependence conoid and its properties.

Theorem 4. Let T be a positive number, xo € R3 be an arbitrary point, P = (xy,T) € R4, I'(P) be the conoid of
the dependence for the system (19), u(x, t) = (ui(x, ), u>(x, 1), uz(x, t)) be a solution of the initial value problem
(2) and (3) such that

u(x, 1) € €' ([0, T); ' (R)) () ([0, T]; 2 (R)), (31)
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o = Z Cam a”g(’; D e (10,71 " (R2)) ()60, T): (%)) (32)

Then if u(x, t) vanishes on S(0) it also vanishes on each surface S(h), h € (0,T). Here S(0) and S(h) are parts of
the planes t = 0 and t = h, respectively, inside the conoid I'(P).

The proof of this theorem follows from the reduction of the system (2) into a symmetric hyperbolic sys-
tem (19) and Theorem 14 of Appendix C.

4. Solution of (2) and (3) with polynomial data with respect to lateral variables

The goal of this section is to show that the solution u = (11, u», u3) of the problem (2) and (3) can be writ-
ten in the polynomial form with respect to lateral variables x;, x, if the data ¢ = (@1, 2, @3),
Y = (Y1, ¥-,3) have the polynomial form relative to x;, x».

We use the following notations and assumptions in this section. Let 7 be an arbitrary positive number,
xo = (0,0,0), P = (xo, T) € R*, I'(P) be the conoid of the dependence for the system (19), S(0) be the bottom
of this conoid for ¢ = 0. Suppose that the solution u(x, ?) of (2) and (3) satisfies the Theorem 4 and initial
data @ = (@1, 92, 3), ¥ = (Y1,¥2,¥3) are such that ¢,(x) € €*(5(0)), ¥i(x) € %°(S(0)) and for x€S(0) the
following polynomial presentations hold

p P

@;(x) = qojl-’"’(X3)x’1"xé, j=1,273, (33)
=0 m=0
o,

lpj(x) = Z lejm(x3)x1xé7 ] = 1a2737 (34)
=0 m=0

where p is a fixed natural number. The functions ¢/x), (x), j=1,2,3 are extended for all x € R? such that
their extensions satisfy (27).

According to Theorems 1-3 there exists a unique classical solution u(x, #) = (u;(x, t), us(x, 1), us(x,1)) of
(2) and (3) satisfying (28). We note that components of this solution can be presented in the form

u;(x1,%2,%3,1) = Uj‘k(x3, t)x?xg, (35)
k=0 s=0
where
1 as+k
U (x3,1) = i, x2,%3,0) g J=1,2,3; s=0,1,2,...; k=0,1,2,... (36)

slk! Qs dxk
Applying the operator D? defined by (24) to Egs. (2) and (3) and denoting

) . N N ) N N ou’ GITA 3 )
u; =D'u;, @i =D'¢;, Y, =D, €,= ( L+ ) Oy = Z CiktmEop (37)

ox,  Ox; Fyt

we find

/ ) ;
61‘2 Za . Jj=1,2,3 xeR >0, (38)

ui(x,0) = oj(x), j=1,23, xeR, (39)
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WOl i), =123, xeR. (40)
ot t=0 !
It follows from (33) and (34) that ¢} =0, zp}f = 0 for x € §(0), y; > p or y, > p. Theorems 1-4 are valid for
the problem (38)—(40) because the initial value problem (38)—(40) is similar to (2) and (3). Using Theorems
1-4 we find that u](x, t)_Ofor(x tHyeIl'(P),j=1,2,3if y;>p or y,>p.
This means that functions U} *(x3,1), j=1,2,3, defined by (36) satisfy the relations Uy Fxs, 1) = 0,
j=1,2,3 for (x3,1) € A(P), where

A(P) = {(x3,1) € R? : (0,0,x3,1) € I'(P)}. (41)

Therefore the solution u = (uy,u,u3) of (2) and (3) has the polynomial form

p

uj(xlax27x3a = Z Z Ué X3, xgxzv (X’ t) € F(P)v (42)
k=0 s=0
where
Ut (x3.0) € °(A(P), j=1,23; sk=0,1,2,....p. (43)

As a result we proved the following theorem.

Theorem 5. Under above mentioned notations and assumptions the solution u = (uy,u,, u3) of the problem (2)
and (3) may be written in the form (42) and (43).

5. Polynomial solution method (PS-method) for (2) and (3)

According to the Theorem 5 the solution of (2) and (3) has the form (42). The explicit formula for
U%"(x3,t), j=1,2,3 and recurrence relations for Uji”‘(x3, 1, j=1,2,3;5,k=0,1,2,...,p,s <p,k <p will be
found in this section. For finding these recurrence relations the system (2) is written in the form

2 2 2 2 2 2 2
0u Ou Ou Ou O’u 0u O°u
P=>=G 2+H : +B =5 +F +D +E , (44)
ot Ox Ox 0x3 Ox10x, Ox;0x3 Ox,0x3
where
i1 €16 Cis cigtCi6 Cra+Ce6 Ciat Cse
G=|cis ce6 cs6|, F=|ces+cin cx+cow cag+cos |, (45)
L C15 Cs6  Css | Cs6 +Cia Cos+Ca6 Cas + Cas
Ce6 €26 Ca6 cis+ci5 ciu+cs6 €13+ Css
H= [cx cn cul, D= |css+cia cs+cs C36+Cas |, (46)
| Ca6  C2a  Ca4 | Css +C13 €45 +C36 €35+ C35
Css C45 C35 Cs6 + Cs6  Ca6 + Cas  C3g + Cys
B=|cs5 ca cu|, E=|cos+cass cutcu cntcy (47)
C35 C34 €33 C45 +C36  Caq +C23 Cy+C34

Consider the initial value problem (44) and (3) in which @ = (@1, @2, ®3), ¥ = (¥ 1,2, ¥3) satisfy (33) and

(34).
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5.1. Fll’ldll’lg Up‘p(x3, l) = (U?'p(x_g, l), U‘;'p(x.g, l), U?p(x_g, l))

Differentiating (44) and (3) p times with respect to x; and then p times with respect to x, and using the
formula (36) we get the system

ourr Uy

atz = axg ) (x37t) € A(P)v (48)
with initial conditions
our?
Up‘p|t:0 = wp‘p(x3)v ot = '/’p’p(x3)7 X3 € L(P)7 (49)
=0
where
L(P)={x; € R: (x3,0) € 4(P)}, (50)

B is defined by (47) and ¢”?(x3), Y"*(x3) are given coefficients of polynomial expansions (33) and (34) of
vector functions ¢, . Since C defined by (7) is a real symmetric positive definite matrix then B defined by
(47) is a real symmetric positive definite matrix also. Hence B is congruent to a diagonal matrix of its eigen-
values. That is, there exists an orthogonal matrix Z such that

i 0 0
Z'BZ=4=1|0 J, 0]. (51)
0 0 7

Because B is positive definite, real and symmetric its eigenvalues 4;, i = 1,2,3 are real and positive.
Setting

ur? = ZYP* (52)

in (48) we get
FLY? LY
o7 U ad
We multiply left-hand side of (53) by Z~' to obtain
oY oY
Denoting v; = (ﬁ)i, j=1,2,3 and using d’Alembert formula we can solve the Cauchy problem for (54)

with the following initial data

oY??
Y|, = Z*1¢P»P(x3), % = Z*‘z//f’*f’(x3), x; € L(P). (55)
t=0

The explicit solution of (54) and (55) is given by

(x3,7) € A(P). (53)

(x3,1) € A(P). (54)

V() =3 [ ), =)+ @ ) et 4o [ @) (0)de

j:1727 37 (x37 )EA(P) (56)
Using (52) and (56) we find
3

Ur (e Z e e e i Y

12,3, () € 4(P), (57)
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where Z;, i,j=1,2,3 are elements of the matrix Z.
5.2. Finding UP""?(x3,t) and UPP~' (x5, 1)

In this subsection we suppose that U (x3,¢), i = 1,2,3 were found by (57). Differentiating (44) and (3)
p—1 times with respect to x; and p times with respect to x, and using the formula (36) we obtain the system

rurlr dwlr U
=B

p—a =B g+ (w0 edP), (58)
with initial conditions
oty
Uy =), =] =), melP), (59)

where ¢ '7(x3), "~ 1#(x3) are given coefficients of (33) and (34). Differentiating (44) and (3) p times with
respect to x; and p—1 times with respect to x, we find

orure! orury! ourr
P—p = o +pE ot (x3,1) € A(P), (60)
p.p—1 p—1 aUMH pp—1
U }t:() = §0p (X3)7 or = l/l (X3), X3 € L(P), (61)
=0

where @”7~!(x3), ¥~ !(x3) are given coefficients of (33) and (34).
Applying the diagonalization process which was described in Section 5.1 and setting

vy =zyr ', (62)
urr!t = zyre! (63)
we find

Ryl Fyrly  gyrr
= D

=A A(P 4
P o2 axg +p 6x3 s (X3,l) € ( )7 (6 )
Yp_l’p‘,zo =Z"9"'""(x3), x;3€L(P), (65)
oyt _
a =Z 'Y 'P(x;), x5 €L(P), (66)
t=0
and
oyrr! o’yrr! G
=A E A(P 67
P o2 ax% +p ax3 ) (X3,l‘) € ( )7 ( )
Yp’pfl‘tzo =Z """ (x3), x3€L(P), (68)
oyrr!
| =2 ), weLp), (69)
t=0

from (58), (59) and (60), (61), respectively. Here

D=Z7"'DZ, E=Z"'EZ (70)
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Using d’Alembert’s formula for (64)—(66) and (67)—(69) and (62), (63) we find for (x3,7) € 4(P) the fol-
lowing formulas:

Up Ip 3 xz+v aUpp d d 1 Z,l 1
wo=3al L
-1 J

j: 1 X3— V

+(Z*1(prlvp)j(x3 + vjt)} +% /x3+1yt(Z1¢pl,p)j(a)da}, i=1,2,3, (x3,¢) € A(P),

3=Vt

(71)
3 x +v;(t—1)
34 ( aUPP 1
p.p— l - —1 p—1 .
UZP™ (x5, 1) Z:le{zpv / " ( o ]) o r)dadr—|—2 [(Z ") (x — vjt)
j=1 J ) J
B B 1 )C‘;‘f*\j . )
+(Z 1(pp,p 1)j(‘x3+Vt 2— . l‘llp,p l)j(a)da}7 1= 1a2737 (x37t) EA(P)
(72)
These are formulas for finding U?~"? (x3, 1), U (x3,1), i = 1,2,3 via UP? (x3,1), (x3,1) € A(P).
5.3. Finding Us’k(X3, t), s,k=01,...,p—1
5.3.1. Case s=p—1, k=p— I
Applying the operator axf’ laxp : to (44) and (3) and using (33), (34) and (36) we find
vt u ! ours! oty
=B D E *FUP?, A(P

p o2 axg +p 6X3 +p a +p U (xfiat) € ( )7 (73)

Up—l,p—l‘t:() = (Pp_lﬁp_l(x3)a X3 € L(P)a (74)

our vt

S| =W w) weLr), 75)

t=0

where @” 77! (x3), Y177 !(x3) are given coefficients of (33) and (34), B, D, E, F are given by (45)(47).
The solution of (73)—(75) is given by

x3+v;(t—1) aUp‘pfl ~ aUpfl‘p _
urtrl = / / D|Z! E|z! 2Rz ture dod
i 2. {va, : o +p o +p°F| ] j(a,r) odt
| .
e (e ‘),,-(xrv,-r>+<z 1) (s + i)
1 x3+v;t
+5- (Z7 ) (o)da o, =123, (x3,0) € A(P), (76)
J Jx3—vjt

where D, E are defined by (70) and

F =7 'FZ. (77)
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532 Casesk=p, s=p—m m=2,...,p
Applying the operator x? pm;'x,, to (44) and (3) for m = 2,. ..,p successively and using (33), (34) and (36) we
find

62Up7mﬁp aZUpfm,p aUpfm+l,p
=B —m+1)D———+ (p—m+1)(p—m+2)GU" "
e G H P D (p e ) m +2) ,
(X3,I) € A(P)7 (78)
Upfm,p|t:() = (Pp_mip(x.’l); X3 € L(P)7 (79)
p—mp
U2 —wm), meww), (80)
ot |

where @7 7"?(x3), Y’ ""P(x3) are given coefficients of (33) and (34); B, D, G are given by (45)—(47).
The solutions of (78)—(80) are given by formulas

m+1 x3+v;(t—1 aUp m+1.p
UP™™ (x3,1) Z o
o= et [ o

—vj(t

+(p—m+2)G[Z ‘U’”’”"”])( t)dodr+ [(Z @), (x5 = vit) + (Z7 9P ) (s + vj)
1 X34+t

+g (Z_lwl’"”p)j(a)da}, i=1,2,3, (x3,t)€4(P), m=2,...,p, (81)
JJx3—vjt

where D and F are given by (70) and (77), and
G=7"'GZ. (82)

533 Casess=p, k=p—m m=2,...p
Taking the derivative of (44) and (3) p times with respect to x;, p—m times with respect to x, and using
(33), (34) and (36) we get

ol Ve Vi aurr
=B — N"E— _ 1 _ 2NH p.p—m+2
7 a2 +(p-m+1) o +(p-m+1)(p—m+2)HU ;

(x3,1) € A(P), (83)
U™y = @™ " (x3), x3 € L(P), (84)
oupr—m

=y""(x3), x3 € L(P), (85)
or |,

where @”” " (x3), Y"P~"(x3) are given coefficients of (33) and (34); B, E, H are given by (46) and (47).
The solution of (83)—(85) is given by

3 x3+v;(t—1) m+1
Z (p—m+1 / /3 g _, ouree
ure( l
XS7 - I{ 2pvj Sy ax3

t(p—m+ 2)ﬁ[Z“UP*P"”+2]> (a t)dodr + = [(z LPP ) (s — vji)

J

Hz ) v [ <z‘z//”*"””>,-<<f>d0},

3—Vjt

i:17273> (X3,t)€A(P), mzza"'7p7 (86)
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where E is given by (70) and
H=27"HZ. (87)

534 Casess=p—m, k=p—n,mmn=2,...p
Taking the derivative of (44) and (3) p — m times with respect to x;, p — n times with respect to x, and
using (33), (34) and (36) we get

azUpfm,pfn 62Up7m’p7n aUP*m+l4p7n aUP*m7P*n+l
_B —m+ D —— 4 (p—n+ NE————
S oz TP mt Dt -t DE—
+ (p —m+ 1)(]7 —n4+ I)FUpfiﬂ‘FlApfﬂ‘Fl T (p —m+ 1)(p —m+ 2)GUp—m+2,p—n
+(p—n+1)(p—n+2HU 2 (x3,1) € AP), (88)
Up_m’p_n|t:0 = (Pp_mﬁp_n (X3), X3 € L(P)v (89)
our—mr
— | =y¥""""(x3), x3 € L(P), (90)
o |

where @ "7 "(x3), YT P (x3) are given coefficients of (33) and (34); B, D, G, E, F, H are given by (45)—
(47).
The solution of (88)—(90) is given by

3 x3+vj(t—1) —m+1,p—n
UP—m,p n X3, Z 1 / / v m+1)ﬁ Z71M
' 2pv; x3—vj(1—1) Ox3

J=1

~ p—m,p—n+1 ~
+(p—n+1)E [Z”L] +(p—m+1)(p—n+1)F[Z 0P 7]

6x 3

+p—m+1)(p—m+2)G[Z7U ] 4 (p—n+1)(p—n+2)H[Z7 0P~ "“]> (0,7)dodt

J

@) =)+ (7 ) ()]

l\)l'—‘

l X3+v;t

Jri (Z_]lpp’npn)j(o_)dg}7 i:172737 (x37t)€A(P)’m’n:2""’p’ (91)

2vj Jx3—vjt

where D, E, F, G, H are given before.

6. PS-method correctness and simulation examples

In this section we present numerical examples that demonstrate the correctness and efficiency of the pro-
posed approach. We consider an example of the Cauchy problem for the isotropic elastic system to show
the correctness of PS-method described in the previous section. The reason to use here the isotropic medium
is the following. We know that the solution of the Cauchy problem only for isotropic elasticity may be
found by a reduction of the initial value problem of elasticity to the initial value problems of wave equa-
tions for scalar and vector elastic potentials (Tikhonov and Samarskii, 1963). This is well known classical
method which we will call SVP (scalar and vector potentials) method. SVP-method is completely different
from PS-method. The correctness of the proposed approach is established by the comparison of solutions
found by these two different methods.
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In this section there are several examples of numerical solutions of initial value problems for different
cases of anisotropy for the same initial data. These examples show the robustness of the proposed method
for the simulation of wave propagation in anisotropic media.

6.1. Test of PS-method correctness

Let us construct a solution of the Cauchy problem for an isotropic elastic system using the wave equa-
tions for the scalar and vector elastic potentials.
Let p =2.203 and matrix C = (C,,,)exs be the matrix with the following elements:

Ci=Cn=Cu3=A4+2u, Cp=C3=Csi=4 Cyu=Cs5=Ce=u, Ai=161, pu=312.

Other elements of the matrix C are equal to zero. Let us consider the scalar functions g(x), A(x) and vector
functions g(x), h(x) which are defined as follows:

glx) = x‘;xg sinx; + x1x; cosxs, h(x) = x?x; sin x3 + x1x, sinxs,
g(x) = (81,82,83), h(x) = (1, ha, h3),
g1(x) = X$x8sinxs, Ay (x) = x}x) sinxs, (92)
2,(x) = x$x3cosxz,  hy(x) = xx5 cosxs,
g;(x) = xx)sinxs,  A3(x) = x8x] sinxs.
Applying operators of gradient V. to g(x) and /(x), and curl, to g(x) and h(x), we find explicitly the fol-
lowing vector functions

¢(x) = Vig(x) + curlg(x), (93)

Y(x) = V,h(x) + curlh(x). (94)

The 3-D images of second components of ¢(x) and y(x) for x, = 10 are shown on the left- and right-
hand sides of Fig. 1.
Let the function v(x, ) be a solution of the following Cauchy problem for the scalar wave equation

2
: Ua(;’ ) (2+2m)A0(x,1), x€ R, 1>0, >
ov 3
vli—o = &%), ol h(x), x e R, .
=0

and the vector-function w(x, t) be a solution of the following Cauchy problem for the vector wave equation

(a) ©2(X1,10,X3) (b) w2(X1,10,X3)

Fig. 1. The second components of initial vector functions: (a) ¢,(xi, 10,x3) and (b) ¥x(xy, 10, x3).



868 V.G. Yakhno, H.K. Akmaz | International Journal of Solids and Structures 42 (2005) 855-876

2
p% = udw(x,t), x€R} >0, (97)
ow 3
w_,=8kx), —=| =h(), xeR. (98)
ot |,
Then the vector-function
u(x,t) = V,v(x, 1) + curl,w(x, ¢) (99)
will be a solution of the Cauchy problem for the following system of isotropic elasticity:
o%u(x, ¢
ua(;’ ) = (A+2u)V.divau(x, ¢) — pcurlcurlu(x, £), x€ R, ¢>0, (100)
Ou

=¥(x), xe R, (101)

u|t:0 = (P(X), E
1=

where @(x), ¥(x) are defined by (93) and (94).

The Cauchy problem (100) and (101) is the main object of this subsection. The solution of (100) and
(101) was found numerically by the formula (99) in which Vuv(x, ¢) and curl,w(x, t) were defined by the fol-
lowing rules. The solution v(x, ¢) of (95) and (96) we find in the following form by Kirchhoff’s formula and
spherical coordinates

2r
v(x, 1) = / / { x+atv)) + th(x + atv) | dow,, (102)
i
where
a2:;V+2’ua V:(Vl,VZ,V3),
P (103)

vi =cosysinf, v, =sinysinf, v;=cosb,
0<y<2n, 0<0<mn do,=sindd0dy.
Using (102) we find V,uv(x,?) as follows:

V,u(x, 1) =i /Zn / [ (x + atv)) +th(x+atv)} dw,. (104)

We note that the partial derivatives of integrands and integrals with respect to  were found analytically
using Maple 7, and then integrals with respect to 0 were calculated using the trapezoid rule. Applying curl,
to the Kirchhoff’s formula for the solution w(x,?) of (97) and (98) we find

curl,w(x, ) /Zn / curl, {6 (tg(x + atv)) + th(x + atv)] dw,. (105)

The calculation of (105) is similar to (104), the partial derivatives of integrands are found analytically using
Maple 7, and then integrals are calculated. From the other hand the solution of (100) and (101) can be
found numerically using PS-method. As a result of it we have two different numerical methods for the solu-
tion of the same Cauchy problem (100) and (101). 3-D images of u,(x, t) for fixed x, and different values of
time variable are shown in Fig. 2. Here the horizontal axes are x; and x3, the vertical axis is u,-axis for
X, =10 and =2, t =15, t = 20, respectively. The left-hand side column of images is obtained by SVP-
method, the right-hand side column corresponds to PS-method. Tables 1-3 contain numerical results in
numbers for i5(3,10,x3,1) = u5(3,10,x3,7) x 107" found by SVP-method and PS-method for x; = —10,
x3=-5,x3=0, x3 =25, x3 =10 and different values of #: t =2 (Table 1), t = 15 (Table 2), t = 20 (Table 3).
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N
2e+12 LN I
le+12 \ ,\_::23:3‘:“\\\ *% /DY
e e =
le+12 Y7 \\\\ %, -.~~——:i’:‘:\“‘ le+12 |\ IR
AN s
TS RN

Fig. 2. 3-D images of uy(xy, 10, x3,7) found by SVP and PS methods for t =2, r =15, t = 20: (a) SVP-method, 7 = 2, (b) PS-method,
t =2, (¢) SVP-method, t = 15, (d) PS-method, = 15, (¢) SVP-method, 7 =20 and (f) PS-method, ¢ = 20.

The similar images and tables we can find for other two components u;(x, 7), us(x, ?) and different values
x, t. We confirm the correctness of PS-method by the comparison of these images and numerical results.

6.2. Simulation examples of wave propagations in anisotropic media by PS-method

The initial value problem (2) and (3) for several cases of C, p and the same initial functions is solved
numerically. The visualization of numerical solutions of these problems are presented in figures below.
The initial functions here are given by the following relations:

0= (01,02, 03), V=, ¥5¥3), (106)
@; =plx)plx)pxs), ¥, =0, j=1,2,3,

where
p(z) =2.49961 — 2.599912> 4 0.806848z* — 0.1170572° + 0.009413472* — 0.0004394762"

+0.00001120762'2 — 1.20324 x 102"
The function p(z) here was found by Mathematica 4 as an interpolating polynomial of

f(2) :% sin (%) (107)

in the interval [—5, 5] with 16 points.
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Table 1

Numerical comparison of SVP and PS methods (7 = 2)
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X3 i (SVP) i, (PS) li12(SVP) — i (PS)]
-10 —0.05209188934 —0.05209155134 0.000000338

-5 0.01053475910 0.01053471708 0.00000004202

0 0.05806851491 0.05806815303 0.00000036188

5 0.02240892456 0.02240876131 0.00000016325

10 —0.04535538582 —0.04535511670 0.00000026912
Table 2

Numerical comparison of SVP and PS methods (¢ = 15)

X3 ilz (SVP) ilz (PS) |il2(SVP) - ilz(PS)l
—10 —4.128852746 —4.128855306 0.00000256

-5 1.208141473 1.208142533 0.00000106

0 4.814261476 4.814264009 0.000002533

5 1.523105374 1.523106767 0.000001393

10 —3.950166243 —3.950168420 0.000002177
Table 3

Numerical comparison of SVP and PS methods (z = 20)

X3 ity (SVP) iy (PS) |it2(SVP) — iy (PS)|
-10 —8.955222938 —8.955253915 0.000030977

-5 2.721805168 2.721813295 0.000008127

0 10.49937635 10.49940493 0.00002858

5 3.234737115 3.234755002 0.000017887

10 —8.664219403 —8.664249582 0.000030179

Let (x1,x2,x3) € R? be space variables and one of these variables be fixed, for example x, = 0. The three-
dimensional graph of each function ¢/x) has a hillock shape which is shown in Fig. 3. The horizontal axes
here are x;, x3, the vertical axis is ¢; for x, = 0. In Fig. 3 level plots of the same surface are shown. The

different colors correspond to different levels of the surface.

(b)

Fig. 3. The third component of initial vector function: (a) 3-D level plot of ¢,(x,0,x3) and (b) 2-D level plot of ¢[x;,0,x3).
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Let us consider now two Cauchy problems (2) and (3) with the same initial vector-functions ¢, ¥, which
are given by (106), for the following two cases of the matrix C and p.

Case 1 corresponds to p =4.64 and the matrix C = (C,,,)¢xs €lements of which are defined as

Fig. 4. uy(x,?) for orthorhombic media:

Fig. 5.
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Cii =301, Cp=16l, Cj=111,
Cp =58, Cy=080, Ciy=4.29, (108)
Cu=1.69, Css=2.06, Ce =1.58,

other elements are equal to zero. Case 1 is relative to materials with the orthorhombic structure.
Case 2 is given by p = 7.28 and the matrix C = (C,,,)¢xs Of the form

C11 = C22 = 453, C12 = 400,
Cis = Cyy =4.15, Cy3 =451, (109)
Cu = Css = 0.651, Cgs =121,

other elements are equal to zero. Case 2 corresponds to the materials with the tetragonal structure.

The solutions of the Cauchy problem (2) and (3) with initial functions (106) for these two cases of C, p
were found by PS-method numerically. In Cartesian coordinates x, x3 we plot the values of u; for x, =0
and 7 = constant as rectangular array of cells with colors on a surface. Different colors correspond to dif-
ferent values of u(x1,0,x3,¢), t = constant (different level of points on the surface). In Figs. 4 and 5 these
plots are shown for t =0.5,t=1,t=15,¢t=2,t=2.5,t=3.

Two other components can be represented by the colored images as well. We can see from the pictures
how the wave propagations in different anisotropic media depend on the type of anisotropy.

7. Conclusion

In this paper we have considered the initial value problem (IVP) for the linear anisotropic elastic system.
The theory, the method of solving this IVP and the simulation of the elastic wave propagation using this
method have been studied. The existence and uniqueness theorems for weak and smooth solutions have
been proved by the reduction of IVP for the original system to IVP for symmetric hyperbolic system of
the first order. All our arguments can be directly generalized for non-homogeneous linear elastic system
with smooth function coefficients depending on space and time variables. We have proved the theorem say-
ing that the solution of IVP for the linear anisotropic elastic system has a polynomial form with respect to
lateral variables if initial data are polynomials with respect to the same lateral variables.

This theorem gives an opportunity to get a method of the IVP solution for linear anisotropic elastic sys-
tem. The central point of our paper is the description of this method which we called Polynomial Solution
method (PS-method). Using this method we have found a solution of IVP for linear anisotropic elastic sys-
tem in the conoid of dependence. We note here that the polynomial structure of the solution for IVP with
polynomial data and PS-method can be generalized for the non-homogeneous elastic anisotropic system
with function coefficients depending on x; (vertical) variable only. This generalization was omitted in
our paper to make it more simple. We have shown by numerical examples that the PS-method is robust
for the simulation of elastic wave propagation in anisotropic media for the case when the initial data are
polynomials with respect to lateral variables.

We note that if the initial data contain continuous functions which are not polynomials we can approx-
imate them by polynomials and then PS-method can be applied to find an approximate solution. The cor-
rectness to use PS-method for the solution of IVP for linear anisotropic elasticity with non-polynomial
initial data is the topic of our further study.
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Appendix A. Matrix theory facts
This appendix contains several classical facts from matrix theory (Goldberg, 1992).

Theorem 6. Let C be a real symmetric positive definite matrix of the size mxm, where m is an arbitrary
positive integer. Then C~" is a real symmetric positive definite matrix.

Proof. Since C'C=CC~! =1, using the symmetry property of C and the rule (AB)* = B*A* we get
I = C(C')*. Multiplying both sides of the last equality by C~' from left-hand side we get C~' = (C™!)*
which implies symmetry property of C~'. A matrix is positive definite if and only if its eigenvalues are pos-
itive. Using this fact we find that C~! is positive definite. [

Theorem 7. Let C be a real symmetric positive definite matrix of the size mxm, where m is an arbitrary pos-
itive integer. Then there exists a real symmetric positive definite matrix M such that C™' = M>.

Proof. According to Theorem 6, C~' is real symmetric positive definite and is congruent to a diagonal
matrix of its eigenvalues. That is, there exists an orthogonal matrix Q such that
QC'Q=4, Q'=Q". (A1)
. -1 - .. . . . . . . 1
Since C~! is positive definite and symmetric, its eigenvalues 4;, i = 1,2,...,m are real and nonnegative. Let A2
be defined as follows

A = diag(Z,i=1,2,....m). (A2)
Now set M = QA%Q*. Since Q is orthogonal, Q*Q =1, and therefore
M? = (QA°Q")(QA'Q") = Q4Q =C". (A3)

Clearly, M = QA%Q* is positive definite. [

Theorem 8. Let A;, S be real symmetric matrices of the size mxm, where m is an arbitrary positive integer.
Then the matrix A; = SA;S is real and symmetric.
Proof. The proof follows from equalities

A, =(SAS) =S'(SA)) =S'A'S"=SAS=A,, O (A.4)

Appendix B. Some existence and uniqueness theorems of symmetric hyperbolic systems theory

This appendix contains results about existence and uniqueness of the Cauchy problem solution for sym-
metric hyperbolic systems of the first order (Mizohata, 1973). We state here these results in terms and forms
which are convenient for us. We use the same notations of the functional spaces which were given before the
Theorem 1. Moreover the space %([0, T]; X) and the Sobolev space #*(R?) are defined as follows. Let X

denote a real Banach space with the norm ||||. Then the space %(]0, T]; X) consists of all continuous func-
tions u: [0, 7] — X with
o) = max, ()] < oc. (B.1)

The Sobolev space #*(R*) consists of all locally integrable functions « : R — R such that for each multi-
index o with |a| < k, Du exists in the weak sense and belongs to .#(R?).
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Consider the initial value problem for the symmetric hyperbolic system

Vi OV
ARl ® T B.2
ot +; Jaxj' (x7t)’ xe ? te (07 )) ( )

V(x,0) =V’ xeR (B.3)
where T'is a fixed positive number, V = (V1, V5, .., Vo) is the vector function with components V; = V{(x, 1),
j=12,...9,A;,j=1,2,3 are real symmetric matrices with constant elements of the order 9x9.

The following theorem is the existence and uniqueness theorem of a weak solution of (B.2) and (B.3).

Theorem 9. Let V' € #'(R*R%), f € ([0, T]; #' (R*; R)). Then (B.2) and (B.3) has a unique solution
V(x,t) such that

Ve ([0, T); (R R) () 4'([0, T); £ (R*; RY)). (B.4)
The statement and the proof of this theorem can be found in the book Mizohata (1973).

Using the Sobolev lemma (Mizohata, 1973), Theorem 6.4 and corollary (Mizohata, 1973, pp. 335-336)
we obtain the existence and uniqueness theorem for genuine solution of (B.2) and (B.3). This has the form:

Theorem 10. Let V° € 73 (R* R%), f € ([0, T]; #°3 (R, R%)). Then the solution of (B.2) and (B.3) belongs
to the class

€((0, 7); 6" (R R) () 6" ((0, T); 6 (R*; R%)). (B.5)

Using the multiindex notation (see (24)) and Theorem 10 we find

Theorem 11. Let y = (y1,7,,0) be an arbitrary multiindex, D'V° € #3(R; R®), D'f € 6([0, T); #*(R*; R?)).
Then the solution of (B.2), (B.3) satisfies

D'V € 6([0,T); 6" (R*; R°)) (%" ([0, T); 6(R*; R?)). (B.6)

Appendix C. Domain of dependence and local uniqueness theorem for symmetric hyperbolic systems

In this appendix we describe several facts of the symmetric hyperbolic systems theory (Courant and Hil-
bert, 1962). These facts are related to the domain of dependence for symmetric hyperbolic systems. We
introduce a space-like lens by the domain of dependence and prove the uniqueness theorem inside of this
lens.

Let x = (x1,x2,x3) € R® be a space variable, 7 be a time variable. Consider the symmetric hyperbolic sys-
tem of the form

Ju 3 Ju
— 4+ A —=0, (C.l)
6[ 12:1: /an

where Aj, j=1,2,3 are symmetric matrices with constant elements. Let P be an arbitrary point with coor-
dinates (x°,¢%), /°>0; I'(P) be the conoid of the dependence for the symmetric hyperbolic system (C.1)
(Courant and Hilbert, 1962); R(#) be the surfaces consisting of the plane t =h, (0 <h < 1°) inside the con-
oid plus the mantle R*(%) of the conoid I'(P) between ¢ =0 and ¢ = /; a space-like lens L(/) be defined as
interior of the surface R(%) for 0 < ¢ < h. The boundary 0L(k) of the lens L(4) consists of the mantle
R*(h) and two space-like surfaces S(0) and S(#). The surfaces S(0) and S(%) are the parts of the planes
t =0 and ¢t = h, respectively, inside the conoid I'(P).
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There is the following fact for symmetric hyperbolic systems of first order (Courant and Hilbert, 1962)
which we state as a proposition.

Proposition 12. Let h € (0,1°) and the mantle R* (h) of the conoid of the dependence I'(P) be defined by the
relation ®(x,1) = 0, where ®(x,t) € €' (R* x [0, h]). Then the characteristic matrix

Z 0d(x, 1) (C2)

— Ox;

is nonnegative on the mantle R*(h).
Further we state and prove a lemma about energy inequalities for the solution of (C.1) inside the lens.

Lemma 13. Let T be a positive number, x° be an arbitrary point of R*, P = (x°, T), I'(P) be the conoid of the
dependence for symmetric hyperbolic system (C.1), u(x,t) € ([0, T]; # (R} R*)) N %' ([0, T]; £*(R*; R?)) be
a solution of (C.1). Then the following energy inequality states:

([l s < llullse) (C3)

where S(h) and S(0) are the parts of the planes t = h and t = 0, respectively, inside the conoid I'(P), h € (0, T);

3
=3 / uy(x, ) di. (C.4)
= sm

Proof. Consider the conoid of the dependence I'(P) and the lens L(/). The boundary 0L(/) of the lens may
be presented as OL(h) = S(0) U S(h) UR"(h), where R (k) is the mantle of I'(P) between ¢ =0 and ¢ = /.
Consider now the system (C.1) and multiply it by 2u to find

u) O(Au,u)
+ Zl: 7@)@- =0. (C.5)
= «
Integrating the last relation over the lens L(k) we have
O(u, u) 0(Au,u)
+ ——— |dxdtr =0. C.6

Applying the Gauss formula to the integral we obtain

/ (uu)dx—/ (uu)dx+/ ! Gébxt i:
S(h) ’ 5(0) ’ %R (h) |de5(x,t)| —

where @(x,t) € €' (R* x [0,4]) is the function such that the surface R*(k) and (0 <h<T) is given by
d(x,1)=0.
Using the proposition and the last relation we find

2 2
[[ullses) < lullsig)- (C8)

,u) ds =0, (C.7)

J

This proves the lemma. [
The following uniqueness theorem follows from this lemma.

Theorem 14. Under the same conditions as were imposed on the Lemma 13, if a solution u(x,t) of (C.1)
vanishes on S(0) it also vanishes on each surface S(h) which forms with S(0) a space-like lens.
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